Rice Genomics and Genetics 2025, Vol.16, No.1, 50-60 http://cropscipublisher.com/index.php/rgg 58 Acknowledgments The Publisher appreciates the comments from two anonymous peer studyers on the manuscript of this study. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Chang T., Li G., Ding Z., Li W., Zhu P., Lei W., and Shangguan D., 2022, Potential G-quadruplexes within the promoter nuclease hypersensitive sites of the heat-responsive genes in rice, ChemBioChem, 23(20): e202200405. https://doi.org/10.1002/cbic.202200405 Cheng Q., Zhou Y., Liu Z., Zhang L., Song G., Guo Z., Wang W., Qu X., Zhu Y., and Yang D., 2015, An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice, Plant Biology, 17(2): 419-429. https://doi.org/10.1111/plb.12267 Creux N., and Harmer S., 2019, Circadian rhythms in plants, Cold Spring Harbor Perspectives in Biology, 17(6): a034611. https://doi.org/10.1101/cshperspect.a034611 Fahad S., Adnan M., Hassan S., Saud S., Hussain S., Wu C., Wang D., Hakeem K., Alharby H., Turan V., Khan M., and Huang J., 2019, Rice responses and tolerance to high temperature. advances in rice research for abiotic stress tolerance, 2019: 201-224. https://doi.org/10.1016/B978-0-12-814332-2.00010-1 Guo T., Mu Q., Wang J., Vanous A., Onogi A., Iwata H., Li X., and Yu J., 2020, Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation, Genome Research, 30: 673-683. https://doi.org/10.1101/gr.255703.119 Guo X., Liu D., and Chong K., 2018, Cold signaling in plants: insights into mechanisms and regulation, Journal of Integrative Plant Biology, 60(9): 745-756. https://doi.org/10.1111/jipb.12706 Jing Y., and Lin R., 2020, Transcriptional regulatory network of the light signaling pathways, The New Phytologist, 227(3): 683-697. https://doi.org/10.1111/nph.16602 Kan Y., and Lin H., 2021, Molecular regulation and genetic control of rice thermal response, Crop Journal, 9(3): 497-505. https://doi.org/10.1016/J.CJ.2021.02.008 Khan S., Anwar S., Anwar S., Ashraf M., Khaliq B., Sun M., Hussain S., Gao Z., Noor H., and Alam S., 2019, Mechanisms and adaptation strategies to improve heat tolerance in rice. a review, Plants, 8(11): 508. https://doi.org/10.3390/plants8110508 Kim S., Torollo G., Yoon M., Kwak J., Lee C., Prahalada G., Choi I., Yeo U., Jeong O., Jena K., and Lee J., 2018, Loss-of-function alleles of Heading date 1 (Hd1) are associated with adaptation of temperate Japonica rice plants to the tropical region, Frontiers in Plant Science, 9: 1827. https://doi.org/10.3389/fpls.2018.01827 Krasensky-Wrzaczek J., and Kangasjärvi J., 2018, The role of reactive oxygen species in the integration of temperature and light signals, Journal of Experimental Botany, 69(14): 3347-3358. https://doi.org/10.1093/jxb/ery074 Legris M., Nieto C., Sellaro R., Prat S., and Casal J., 2017, Perception and signalling of light and temperature cues in plants, The Plant Journal, 90: 683-697. https://doi.org/10.1111/tpj.13467 Li J., Yang C., Xu J., Lu H., and Liu J., 2022, The hot science in rice research: how rice plants cope with heat stress, Plant, Cell & Environment, 46(4): 1087-1103. https://doi.org/10.1111/pce.14509 Li J., Zeng Y., Pan Y., Zhou L., Zhang Z., Guo H., Lou Q., Shui G., Huang H., Tian H., Guo Y., Yuan P., Yang H., Pan G., Wang R., Zhang H., Yang S., Guo Y., Ge S., Li J., and Li Z., 2021, Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice, The New Phytologist, 231(3): 1056-1072. https://doi.org/10.1111/nph.17407 Liu C., Ou S., Mao B., Tang J., Wang W., Wang H., Cao S., Schläppi M., Zhao B., Xiao G., Wang X., and Chu C., 2018, Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates, Nature Communications, 9: 3302. https://doi.org/10.1038/s41467-018-05753-w Liu H., Zeng B., Zhao J., Yan S., Wan J., and Cao Z., 2023, Genetic research progress: heat tolerance in rice, International Journal of Molecular Sciences, 24(8): 7140. https://doi.org/10.3390/ijms24087140 Lu X., Zhou Y., Fan F., Peng J., and Zhang J., 2020, Coordination of light, circadian clock with temperature: the potential mechanisms regulating chilling tolerance in rice, Journal of Integrative Plant Biology, 62(6): 737-760. https://doi.org/10.1111/jipb.12852 Lv Y., Hussain M., Luo D., and Tang N., 2019, Current understanding of genetic and molecular basis of cold tolerance in rice, Molecular Breeding, 39: 159. https://doi.org/10.1007/s11032-019-1073-5
RkJQdWJsaXNoZXIy MjQ4ODYzNA==