RGG_2024v15n6

Rice Genomics and Genetics 2024, Vol.15, No.5, 287-296 http://cropscipublisher.com/index.php/rgg 295 Dwivedi S., Garcia-Oliveira A., Govindaraj M., and Ortiz R., 2023, Biofortification to avoid malnutrition in humans in a changing climate: Enhancing micronutrient bioavailability in seed tuber and storage roots, Frontiers in Plant Science, 14: 1119148. https://doi.org/10.3389/fpls.2023.1119148 Enguttuvel P., G P., C J., D S., Cn N., J., P B., R G., J A., Sv S., Lv S., As H., K S., D S., Rm S., and Govindaraj M., 2023, Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents, Frontiers in Plant Science, 14: 1138408. https://doi.org/10.3389/fpls.2023.1138408 Fiaz S., Ahmad S., Noor M., Wang X., Younas A., Riaz A., Riaz A., and Ali F., 2019, Applications of the CRISPR/Cas9 System for rice grain quality improvement: perspectives and opportunities, International Journal of Molecular Sciences, 20(4): 888. https://doi.org/10.3390/ijms20040888 Huang Y.M., 2024 Systematic analysis of QTLs for rice yield and quality: from mapping to application Molecular Plant Breeding 15(5): 308-316 Islam M., Arifuzzaman M., Banik S., Hossain M., Ferdous J., Khalequzzaman M., Pittendrigh B., Tomita M., and Ali M., 2020, Mapping QTLs underpin nutrition components in aromatic rice germplasm, PLoS One, 15(6): e0234395. https://doi.org/10.1371/journal.pone.0234395 Joshi G., Soe Y., Palanog A., Hore T., Nha C., Calayugan M., Inabangan-Asilo M., Amparado A., Pandey I., Cruz P., Hernandez J., and Swamy B., 2023, Meta-QTL s and haplotypes for efficient zinc biofortification of rice, The Plant Genome, 16(4): e20315. https://doi.org/10.1002/tpg2.20315 Kim Y., Moon H., and Park C., 2019, CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv., Oryzae, Rice, 12: 1-13. https://doi.org/10.1186/s12284-019-0325-7 Lafitte H., 1998, Research opportunities to improve nutrient-use efficiency in rice cropping systems, Field Crops Research, 56: 223-236. https://doi.org/10.1016/S0378-4290 97)00134-2 Lau W., and Latif M., 2019, Current breeding approaches for developing rice with improved grain and nutritional qualities, Quality Breeding in Field Crops, 2019: 199-216. https://doi.org/10.1007/978-3-030-04609-5_10 Liu J., Wu X., Yao X., Yu R., Larkin P., and Liu C., 2018, Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains, Proceedings of the National Academy of Sciences of the United States of America, 115: 11327-11332. https://doi.org/10.1073/pnas.1806304115 Liu L., Li H., Zhu S., Gao Y., Zheng X., and Xu Y., 2021, The response of agronomic characters and rice yield to organic fertilization in subtropical China: A three-level meta-analysis, Field Crops Research, 263: 108049. https://doi.org/10.1016/J.FCR.2020.108049 Mahender A., Anandan A., Pradhan S., and Pandit E., 2016, Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches, SpringerPlus, 5: 1-18. https://doi.org/10.1186/s40064-016-3744-6 Manzeke-Kangara M., Joy E., Lark R., Redfern S., Eilander A., Broadley M., Ghosh A., Nadeem F., and Choudhary A., 2023, Do agronomic approaches aligned to regenerative agriculture improve the micronutrient concentrations of edible portions of crops? A scoping review of evidence, Frontiers in Nutrition, 10: 1078667. https://doi.org/10.3389/fnut.2023.1078667 Mbanjo E., Kretzschmar T., Jones H., Ereful N., Blanchard C., Boyd L., and Sreenivasulu N., 2020, The genetic basis and nutritional benefits of pigmented rice grain, Frontiers in Genetics, 11: 229. https://doi.org/10.3389/fgene.2020.00229 Muthayya S., Sugimoto J., Montgomery S., and Maberly G., 2014, An overview of global rice production supply trade and consumption, Annals of the New York Academy of Sciences, 1324(1): 7-14. https://doi.org/10.1111/nyas.12540 Palanog A., Nha C., Descalsota-Empleo G., Calayugan M., Swe Z., Amparado A., Inabangan-Asilo M., Hernandez J., Cruz P., Borromeo T., Lalusin A., Mauleon R., McNally K., and Swamy B., 2023, Molecular dissection of connected rice populations revealed important genomic regions for agronomic and biofortification traits, Frontiers in Plant Science, 14: 1157507. https://doi.org/10.3389/fpls.2023.1157507 Patra B., Majhi P., Tripathy S., Tripathy S., Khan A., Behera P., Das S., and Ahamad A., 2022, Genomic-assisted breeding tools for grain and nutritional quality improvement in rice, International Journal of Environment and Climate Change, 12: 10-24. https://doi.org/10.9734/ijecc/2022/v12i130609 Peng B., Jin K., Luo D., Tian X., Sun Y., Huang X., Pang R., Wang Q., Zhou W., Yuan H., Yang F., Peng J., Li H., Song X., and Xin-Xiang A., 2020, The nutritional components of rice are closely related to grain quality traits in rice, Journal of Biology and Life Science, 11: 239. https://doi.org/10.5296/jbls.v11i2.17809 Pezzotti G., Zhu W., Chikaguchi H., Marin E., Boschetto F., Masumura T., Sato Y., and Nakazaki T., 2021, Raman molecular fingerprints of rice nutritional quality and the concept of raman barcode, Frontiers in Nutrition, 8: 663569. https://doi.org/10.3389/fnut.2021.663569 Rajagopalan V., Manickam S., and Muthurajan R., 2022, A comparative metabolomic analysis reveals the nutritional and therapeutic potential of grains of the traditional rice variety Mappillai Samba, Plants, 11(4): 543. https://doi.org/10.3390/plants11040543

RkJQdWJsaXNoZXIy MjQ4ODYzNA==