RGG_2024v15n4

Rice Genomics and Genetics 2024, Vol.15, No.4, 190-202 http://cropscipublisher.com/index.php/rgg 202 Huang X., Yang S., Gong J., Zhao Q., Feng Q., Zhan Q., and Han B., 2016, Genomic architecture of heterosis for yield traits in rice, Nature, 537(7621): 629-633. https://doi.org/10.1038/nature19872 Ismail A.M., Singh U.S., Singh S., Dar M.H., and Mackill D.J., 2013, The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia, Field Crops Research, 152: 83-93. https://doi.org/10.1016/j.fcr.2013.01.007 Khush G.S., 2013, Strategies for increasing the yield potential of cereals: case of rice as an example, Plant Breeding, 132(5): 433-436. https://doi.org/10.1111/pbr.12045 Li Z., Pinson S.R., Park W.D., Paterson A.H., and Stansel J.W., 2020, Epistasis for three grain yield components in rice (Oryza sativa L.), Genetics, 145(2): 453-465. https://doi.org/10.1093/genetics/145.2.453 Luo L.J., Li Z.K., Mei H.W., Shu Q.Y., Tabien R., Zhong D.B., and Cheng S.H., 2013, Overdominance and epistasis in the breeding of hybrid rice for yield heterosis, Theoretical and Applied Genetics, 106(6): 1012-1018. https://doi.org/10.1007/s00122-012-0935-1 Nguyen V.N., Bui T.C., and Le Q.D., 2015, Development and adoption of hybrid rice in Vietnam, International Journal of Agronomy and Agricultural Research, 7(3): 58-66. Peng S., and Khush G.S., 2003, Four decades of breeding for varietal improvement of irrigated lowland rice in the international rice research institute, Plant Production Science, 6(3): 157-164. https://doi.org/10.1626/pps.6.157 Perez-Enciso M., and Zingaretti L.M., 2019, Bayesian models and algorithms for genome-wide prediction in plants, Current Opinion in Plant Biology, 45: 69-75. https://doi.org/10.1016/j.pbi.2018.12.005 Singh A.K., Singh V.K., Singh S.P., Ellur R.K., Choudhary V., Sarkel S., and Mohapatra T., 2017, Pusa RH10: a decade of service to the Indian farmers, Indian Journal of Genetics and Plant Breeding, 77(3): 376-382. https://doi.org/10.5958/0975-6906.2017.00053.3 Spielman D.J., Byerlee D., Alemu D., and Kelemework D., 2012, Policies to promote cereal intensification in Ethiopia: The search for appropriate public and private roles, Food Policy 37(3): 165-175. https://doi.org/10.1016/j.foodpol.2012.02.002 Spindel J.E., Begum H., Akdemir D., Virk P., Collard B., Redoña E., and McCouch S.R., 2015, Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture training population composition marker number and statistical model on accuracy of rice genomic selection in elite tropical rice breeding lines, PLoS Genetics, 11(2): e1004982. https://doi.org/10.1371/journal.pgen.1004982 Swetha T.N., Yogeeswari R., and Udayakumar M., 2020, Proteomics: a powerful tool to study plant responses to biotic stress, Current Science, 118(2): 181-190. https://doi.org/10.18520/cs/v118/i2/181-190 Xu K., Xu X., Fukao T., Canlas P., Maghirang-Rodriguez R., Heuer S., and Ismail A.M., 2006., Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice, Nature, 442(7103): 705-708. https://doi.org/10.1038/nature04920 Yang W., Duan L., Chen G., Xiong L., and Liu Q., 2020, Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies, Current Opinion in Plant Biology, 54: 58-64. https://doi.org/10.1016/j.pbi.2020.02.004 Zhang H., Li Y., and Zhu J.K., 2018, Developing naturally stress-resistant crops for a sustainable agriculture, Nature Plants, 4(12): 989-996. https://doi.org/10.1038/s41477-018-0309-4

RkJQdWJsaXNoZXIy MjQ4ODYzNA==