RGG_2024v15n4

Rice Genomics and Genetics 2024, Vol.15, No.4, 178-189 http://cropscipublisher.com/index.php/rgg 188 Huang L., Liu H., Wu J., Zhao R., Li Y., Melaku G., Zhang S., Huang G., Bao Y., Ning M., Chen B., Gong Y., Hu Q., Zhang J., and Zhang Y., 2020, Evolution of plant architecture in Oryza driven by the PROG1 locus, Frontiers in Plant Science, 11: 876. https://doi.org/10.3389/fpls.2020.00876 Huang X., Kurata N., Wei X., Wang Z., Wang A., Zhao Q., Zhao Y., Liu K., Lu H., Li W., Guo Y., Lu Y., Zhou C., Fan D., Weng Q., Zhu C., Huang T., Zhang L., Wang Y., Feng L., Furuumi H., Kubo T., Miyabayashi T., Yuan X., Xu Q., Dong G., Zhan Q., Li C., Fujiyama A., Toyoda A., Lu T., Feng Q., Qian Q., Li J., and Han B., 2012, A map of rice genome variation reveals the origin of cultivated rice, Nature, 490(7421): 497-501. https://doi.org/10.1038/nature11532 Labroo M., Clark L., Zhang S., Hu F., Tao D., Hamilton R., and Sacks E., 2023, Solving the mystery of Obake rice in Africa: population structure analyses of Oryza longistaminata reveal three genetic groups and evidence of both recent and ancient introgression with O. sativa, Frontiers in Plant Science, 14: 1278196. https://doi.org/10.3389/fpls.2023.1278196 Lacchini E., Kiegle E., Castellani M., Adam H., Jouannic S., Gregis V., and Kater M., 2020, CRISPR-mediated accelerated domestication of African rice landraces, PLoS One, 15(3): e0229782. https://doi.org/10.1371/journal.pone.0229782 Lam D., Buu B., Lang N., Toriyama K., Nakamura I., and Ishikawa R., 2019, Genetic diversity among perennial wild rice Oryza rufipogon Griff., in the Mekong Delta, Ecology and Evolution, 9(5): 2964-2977. https://doi.org/10.1002/ece3.4978 Liu R., Zheng X., Zhou L., Zhou H., and Ge S., 2015, Population genetic structure of Oryza rufipogon and Oryza nivara: implications for the origin of O. nivara, Molecular Ecology, 24(20): 5211-5228. https://doi.org/10.1111/mec.13375 Londo J., Chiang Y., Hung K., Chiang T., and Schaal B., 2006, Phylogeography of Asian wild rice Oryza rufipogon reveals multiple independent domestications of cultivated rice Oryza sativa, Proceedings of the National Academy of Sciences of the United States of America, 103(25): 9578-9583. https://doi.org/10.1073/PNAS.0603152103 Lu Y., 2023, Gene genealogy-based mutation analysis reveals emergence of aus, tropical japonica, and aromatic of Oryza sativa during the later stage of rice domestication, Genes, 14(7): 1412. https://doi.org/10.3390/genes14071412 Mokodongan D., Montenegro J., Mochida K., Fujimoto S., Ishikawa A., Kakioka R., Yong L., Yong L., Mulis, Hadiaty R., Mandagi I., Masengi K., Wachi N., Hashiguchi Y., Kitano J., and Yamahira K., 2018, Phylogenomics reveals habitat-associated body shape divergence in Oryzias woworae species group (Teleostei: Adrianichthyidae), Molecular Phylogenetics and Evolution, 118: 194-203. https://doi.org/10.1016/j.ympev.2017.10.005 Nabholz B., Sarah G., Sabot F., Ruiz M., Adam H., Nidelet S., Ghesquière A., Santoni S., David J., and Glémin S., 2014, Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima), Molecular Ecology, 23(9): 2210-2227. https://doi.org/10.1111/mec.12738 Roma-Burgos N., Sudo M., Olsen K., Werle I., and Song B., 2021, Weedy rice (Oryza spp.): what’s in a name, Weed Science, 69(5): 505-513. https://doi.org/10.1017/wsc.2021.22 Singh B., Singh N., Mishra S., Tripathi K., Singh B., Rai V., Singh A., and Singh N., 2018, Morphological and molecular data reveal three distinct populations of Indian wild rice Oryza rufipogon Griff., species complex, Frontiers in Plant Science, 9: 123. https://doi.org/10.3389/fpls.2018.00123 Stein J., Yu Y., Copetti D., Zwickl D., Zhang L., Zhang C., Chougule K., Gao D., Iwata A., Goicoechea J., Wei S., Wang J., Liao Y., Wang M., Jacquemin J., Becker C., Kudrna D., Zhang J., Londono C., Song X., Lee S., Sanchez P., Zuccolo A., Ammiraju J., Talag J., Danowitz A., Rivera L., Gschwend A., Noutsos C., Wu C., Kao S., Zeng J., Wei F., Zhao Q., Feng Q., Baidouri M., Carpentier M., Lasserre E., Cooke R., Farias D., Maia L., Santos R., Nyberg K., McNally K., Mauleon R., Alexandrov N., Schmutz J., Flowers D., Fan C., Weigel D., Jena K., Wicker T., Chen M., Han B., Henry R., Hsing Y., Kurata N., Oliveira A., Panaud O., Jackson S., Machado C., Sanderson M., Long M., Ware D., and Wing R., 2018, Genomes of 13 domesticated and wild rice relatives highlight genetic conservation turnover and innovation across the genus Oryza, Nature Genetics, 50(2): 285-296. https://doi.org/10.1038/s41588-018-0040-0 Thierry M., Charriat F., Milazzo J., Adreit H., Ravel S., Cros-Arteil S., Borron S., Sella V., Kroj T., Ioos R., Fournier E., Tharreau D., and Gladieux P., 2022, Maintenance of divergent lineages of the rice blast fungus Pyricularia oryzae through niche separation loss of sex and post-mating genetic incompatibilities, PLoS Pathogens, 18(7): e1010687. https://doi.org/10.1371/journal.ppat.1010687 Veltman M., Flowers J., Andel T., and Schranz M., 2019, Origins and geographic diversification of African rice (Oryza glaberrima), PLoS One, 14(3): e0203508. https://doi.org/10.1371/journal.pone.0203508 Wambugu P., Ndjiondjop M., and Henry R., 2021, Genetics and genomics of African rice (Oryza glaberrima Steud) domestication, Rice, 14(1): 6. https://doi.org/10.1186/s12284-020-00449-6 Wambugu P., Nyamongo D., Ndjiondjop M., and Henry R., 2018, Evolutionary relationships among the Oryza species, 2018: 41-54. https://doi.org/10.1007/978-3-319-71997-9_3

RkJQdWJsaXNoZXIy MjQ4ODYzNA==