RGG_2024v15n4

Rice Genomics and Genetics 2024, Vol.15, No.4, 164-177 http://cropscipublisher.com/index.php/rgg 175 References Ahmad M., 2022, Genomics and transcriptomics to protect rice (Oryza sativa L.) from abiotic stressors: pathways to achieving zero hunger, Frontiers in Plant Science, 13: 1002596. https://doi.org/10.3389/fpls.2022.1002596 Bansal J., Gupta K., Rajkumar M., Garg R., and Jain M., 2020, Draft genome and transcriptome analyses of halophyte rice Oryza coarctata provide resources for salinity and submergence stress response factors, Physiologia Plantarum, 173(4): 1309-1322. https://doi.org/10.1111/ppl.13284 Beerelli K., Balakrishnan D., Addanki K., Surapaneni M., Yadavalli V., and Neelamraju S., 2022, Mapping of QTLs for yield traits using F2:3:4 populations derived from two alien introgression lines reveals qTGW8,1 as a consistent QTL for Grain weight from Oryza nivara, Frontiers in Plant Science, 13: 790221. https://doi.org/10.3389/fpls.2022.790221 Bharamappanavara M., Chikkahosahalli M., Patil B., Vijjeswarapu A., Anantha M., Ramappa L., Diwan J., Nidagundi J., Mathada U., Talagunda S., Guddalahalli L., Byanna R., Rathod S., Sundaram R., Subbarao L., Rapolu M., and Gireesh C., 2023, Genetic analysis and identification of QTLs associated with yield-enhancing traits in Oryza sativa IR64×Oryza glaberrima interspecific backcross populations, Crop and Pasture Science, 74(11): 1023-1036. https://doi.org/10.1071/CP22105 Bommisetty R., Chakravartty N., Bodanapu R., Naik J., Panda S., Lekkala S., Lalam K., Thomas G., Mallikarjuna S., Eswar G., Kadambari G., Bollineni S., Issa K., Akkareddy S., Srilakshmi C., Hariprasadreddy K., Rameshbabu P., Sudhakar P., Gupta S., Lachagari V., and Vemireddy L., 2020, Discovery of genomic regions and candidate genes for grain weight employing next generation sequencing based QTL-seq approach in rice (Oryza sativa L.), Molecular Biology Reports, 47(11): 8615-8627. https://doi.org/10.1007/s11033-020-05904-7 Cantalapiedra C., Hernández-Plaza A., Letunic I., Bork P., and Huerta-Cepas J., 2021, eggNOG-mapper v2: functional annotation orthology assignments and domain prediction at the metagenomic scale, Molecular Biology and Evolution, 38(12): 5825-5829. https://doi.org/10.1093/molbev/msab293 Chadha S., 2021, Analysis of genetic variations and genomic instabilities in Magnaporthe oryzae, Methods in Molecular Biology, 2021: 211-224. https://doi.org/10.1007/978-1-0716-1613-0_17 Chen E., Huang X., Tian Z., Wing R., and Han B., 2019, The genomics of Oryza Species provides insights into rice domestication and heterosis, Annual Review of Plant Biology, 70(1): 639-665. https://doi.org/10.1146/annurev-arplant-050718-100320 Chen M., Zhu F., Gao B., Ma K., Zhang Y., Fernie A., Chen X., Dai L., Ye N., Zhang X., Tian Y., Zhang D., Xiao S., Zhang J., and Liu Y., 2019, Full-length transcript-based proteogenomics of rice improves its genome and proteome annotation, Plant Physiology, 182(3): 1510-1526. https://doi.org/10.1104/pp.19.00430 Chen Y., Yang W., Gao R., Chen Y., Zhou Y., Xie J., and Zhang F., 2023, Genome-wide analysis of microRNAs and their target genes in Dongxiang wild rice (Oryza rufipogon Griff) responding to salt stress, International Journal of Molecular Sciences, 24(4): 4069. https://doi.org/10.3390/ijms24044069 Dai S., Zhu X., Hutang G., Li J., Tian J., Jiang X., Zhang D., and Gao L., 2022, Genome size variation and evolution driven by transposable elements in the genus Oryza, Frontiers in Plant Science, 13: 921937. https://doi.org/10.3389/fpls.2022.921937 Doucouré H., Pérez-Quintero Á., Reshetnyak G., Tékété C., Auguy F., Thomas E., Koebnik R., Szurek B., Koita O., Verdier V., and Cunnac S., 2018, Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains, Frontiers in Microbiology, 9: 1657. https://doi.org/10.3389/fmicb.2018.01657 Hechanova S.L., Bhattarai K., Simon E.V., Clave G., Karunarathne P., Ahn E., Li C., Lee J., Kohli A., Hamilton N., Hernandez J., Gregorio G., Jena K., An G., and Kim S., 2021, Development of a genome-wide InDel marker set for allele discrimination between rice (Oryza sativa) and the other seven AA-genome Oryza species, Scientific Reports, 11(1): 8962. https://doi.org/10.1038/s41598-021-88533-9 Hong W.J., Kim Y.J., Kim E.J., Kumar A., Moon S., Gho Y., Yoou M., Kim S., and Jung K., 2020, CAFRI-Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice, The Plant Journal: for Cell And molecular Biology, 104(2): 532-545. https://doi.org/10.1111/tpj.14926 Huang C., Chen Z., and Liang C., 2021, Oryza pan-genomics: a new foundation for future rice research and improvement, Crop Journal, 9(3): 622-632. https://doi.org/10.1016/j.cj.2021.04.003 Kim Y., Moon H., and Park C., 2019, CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae, Rice, 12: 1-13. https://doi.org/10.1186/s12284-019-0325-7 Kong W., Zhong H., Gong Z., Fang X., Sun T., Deng X., and Li Y., 2019, Meta-analysis of salt stress transcriptome responses in different rice genotypes at the seedling stage, Plants, 8(3): 64. https://doi.org/10.3390/plants8030064

RkJQdWJsaXNoZXIy MjQ4ODYzNA==