RGG_2024v15n4

Rice Genomics and Genetics 2024, Vol.15, No.4, 153-163 http://cropscipublisher.com/index.php/rgg 163 Tripathi A., Pareek A., Sopory S., and Singla-Pareek S., 2012, Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes, Rice, 5: 1-12. https://doi.org/10.1186/1939-8433-5-37 Usman B., Nawaz G., Zhao N., Liao S., Qin B., Liu F., Liu Y., and Li R., 2020, Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins, International Journal of Molecular Sciences, 22(1): 249. https://doi.org/10.3390/ijms22010249 Xu S., Xu Y., Gong L., and Zhang Q., 2016, Metabolomic prediction of yield in hybrid rice, The Plant Journal: for Cell and Molecular Biology, 88(2): 219-227. https://doi.org/10.1111/tpj.13242 Wang K., and Ortigosa S., 2013, Faculty opinions recommendation of overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching, Nature Biotechnology, 31(9): 848-852. https://doi.org/10.3410/f.718043708.793483739 Wang S., Ma B., Gao Q., Jiang G., Zhou L., Tu B., Qin P., Tan X., Liu P., Kang Y., Wang Y., Chen W., Liang C., and Li S., 2018, Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a andGS3 as key genes, Theoretical and Applied Genetics, 131: 1391-1403. https://doi.org/10.1007/s00122-018-3085-7 Wang S., Wu K., Qian Q., Liu Q., Li Q., Pan Y., Ye Y., Liu X., Wang J., Zhang J., Li S., Wu Y., and Fu X., 2017, Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield, Cell Research, 27(9): 1142-1156. https://doi.org/10.1038/cr.2017.98 Wang X., Jing Z., He C., Liu Q., Jia H., Qi J., and Zhang H., 2021, Breeding rice varieties provides an effective approach to improve productivity and yield sensitivity to climate resources, European Journal of Agronomy, 124: 126239. https://doi.org/10.1016/J.EJA.2021.126239 Wei S., Li X., Lu Z., Zhang H., Ye X., Zhou Y., Li J., Yan Y., Pei H., Duan F., Wang D., Chen S., Wang P., Zhang C., Shang L., Zhou Y., Yan P., Zhao M., Huang J., Bock R., Qian Q., and Zhou W., 2022, A transcriptional regulator that boosts grain yields and shortens the growth duration of rice, Science, 377: 6604. https://doi.org/10.1126/science.abi8455 Zeng Y., Wen J., Zhao W., Wang Q., and Huang W., 2020, Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR-Cas9 system, Frontiers in Plant Science, 10: 1663. https://doi.org/10.3389/fpls.2019.01663 Zong G., Wang A., Wang L., Liang G., Gu M., Sang T., and Han B., 2012, A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativaL.), Journal of Genetics and Genomics, 39(7): 335-350. https://doi.org/10.1016/j.jgg.2012.06.004

RkJQdWJsaXNoZXIy MjQ4ODYzNA==