RGG_2024v15n4

Rice Genomics and Genetics 2024, Vol.15, No.4, 153-163 http://cropscipublisher.com/index.php/rgg 162 Huang X., Qian Q., Liu Z., Sun H., He S., Luo D., Xia G., Chu C., Li J., and Fu X., 2009, Natural variation at the DEP1 locus enhances grain yield in rice, Nature Genetics, 41: 494-497. https://doi.org/10.1038/ng.352 Huang X., Yang S., Gong J., Zhao Q., Feng Q., Zhan Q., Zhao Y., Li W., Cheng B., Xia J., Chen N., Huang T., Zhang L., Fan D., Chen J., Zhou C., Lu Y., Weng Q., and Han B., 2016, Genomic architecture of heterosis for yield traits in rice, Nature, 537: 629-633. https://doi.org/10.1038/nature19760 Ikeda M., Miura K., Aya K., Kitano H., and Matsuoka M., 2013, Genes offering the potential for designing yield-related traits in rice, Current Opinion in Plant Biology, 16(2): 213-220. https://doi.org/10.1016/j.pbi.2013.02.002 Jena K., and Mackill D., 2008, Molecular markers and their use in marker-assisted selection in rice, Crop Science, 48: 1266-1276. https://doi.org/10.2135/CROPSCI2008.02.0082 Jeon J., Jung K., Kim H., Suh J., and Khush G., 2011, Genetic and molecular insights into the enhancement of rice yield potential, Journal of Plant Biology, 54: 1-9. https://doi.org/10.1007/s12374-011-9144-0 Kumar A., Sandhu N., Venkateshwarlu C., Priyadarshi R., Yadav S., Majumder R., and Singh V., 2020, Development of introgression lines in high yielding, semi-dwarf genetic backgrounds to enable improvement of modern rice varieties for tolerance to multiple abiotic stresses free from undesirable linkage drag, Scientific Reports, 10: 13073. https://doi.org/10.1038/s41598-020-70132-9 Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., and Li H., 2016, Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system, Frontiers in Plant Science, 7: 377. https://doi.org/10.3389/fpls.2016.00377 Li Z., and Zhang F., 2013, Rice breeding in the post-genomics era: from concept to practice, Current Opinion in Plant Biology, 16(2): 261-269. https://doi.org/10.1016/j.pbi.2013.03.008 Luan X., Dai Z., Yang W., Tan Q., Lu Q., Guo J., Zhu H., Liu G., Wang S., and Zhang G., 2019, Breeding by design of CMS lines on the platform of SSSL library in rice, Molecular Breeding, 39: 126. https://doi.org/10.1007/s11032-019-1028-x Ludwików A., Cieśla A., Arora P., Das G., Rao G., and Das R., 2015, Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar, Frontiers in Plant Science, 6: 698. https://doi.org/10.3389/fpls.2015.00698 Mao T., Zhu M., Sheng Z., Shao G., Jiao G., Mawia A., Ahmad S., Xie L., Tang S., Wei X., Hu S., and Hu P., 2021, Effects of grain shape genes editing on appearance quality of erect-panicle geng/japonica rice, Rice, 14(1): 74. https://doi.org/10.1186/s12284-021-00517-5 Nutan K., Rathore R., Tripathi A., Mishra M., Pareek A., and Singla-Pareek S., 2020, Integrating dynamics of yield traits in rice responding to environmental changes, Journal of Experimental Botany, 2(7): 490-506. https://doi.org/10.1093/jxb/erz364 Qian Q., Guo L., Smith S., and Li J., 2016, Breeding high-yield superior quality hybrid super rice by rational design, National Science Review, 3(3): 283-294. https://doi.org/10.1093/NSR/NWW006 Raza Q., R擰ඪaz A., Bashir K., and Sabar M., 2020, Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars, Plant Molecular Biology, 104: 97-112. https://doi.org/10.1007/s11103-020-01027-6 Sakamoto T., and Matsuoka M., 2008, Identifying and exploiting grain yield genes in rice, Current Opinion in Plant Biology, 11(2): 209-214. https://doi.org/10.1016/j.pbi.2008.01.009 Sen P., Ghosh S., Sarkar S., Chanda P., Mukherjee A., Datta S., and Datta K., 2016, Pyramiding of three C4 specific genes towards yield enhancement in rice, Plant Cell, Tissue and Organ Culture (PCTOC), 128: 145-160. https://doi.org/10.1007/s11240-016-1094-2 Singh G., Kaur N., Khanna R., Kaur R., Gudi S., Kaur R., Sidhu N., Vikal Y., and Mangat G., 2022, 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (Oryza sativa L.), Critical Reviews in Biotechnology, 44(1): 139-162. https://doi.org/10.1080/07388551.2022.2112648 Spindel J., Begum H., Akdemir D., Virk P., Collard B., Redoña E., Atlin G., Jannink J., and McCouch S., 2015, Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines, PLoS Genetics, 11(2): e1004982. https://doi.org/10.1371/journal.pgen.1004982 Su J., Xu K., Li Z., Hu Y., Hu Z., Zheng X., Song S., Tang Z., and Li L. 2021, Genome-wide association study and mendelian randomization analysis provide insights for improving rice yield potential, Scientific Reports, 11(6): e1005350. https://doi.org/10.1038/s41598-021-86389-7 Swamy B., and Kumar A., 2013, Genomics-based precision breeding approaches to improve drought tolerance in rice, Biotechnology Advances, 31(8): 1308-1318. https://doi.org/10.1016/j.biotechadv.2013.05.004

RkJQdWJsaXNoZXIy MjQ4ODYzNA==