RGG_2024v15n3

Rice Genomics and Genetics 2024, Vol.15, No.3, 132-141 http://cropscipublisher.com/index.php/rgg 140 Huang X., Zhao Y., Wei X., Li C., Wang A., Zhao Q., Li W., Guo Y., Deng L., Zhu C., Fan D., Lu Y., Weng Q., Liu K., Zhou T., Jing Y., Si L., Dong G., Huang T., Lu T., Feng Q., Qian Q., Li J., and Han B., 2011, Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm, Nature Genetics, 44(1): 32-39. https://doi.org/10.1038/ng.1018. Islam A., Ali M., Gregorio G., and Islam M., 2012, Genetic diversity analysis of stress tolerant rice (Oryza sativa L.), African Journal of Biotechnology, 11(85): 15123-15129. https://doi.org/10.4314/AJB.V11I85. Jin X., Chen Y., Liu P., Li C., Cai X., Rong J., and Lu B., 2018, Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation, AoB Plants, 10(1): plx055. https://doi.org/10.1093/aobpla/plx055. Kamboj R., Singh B., Mondal T., and Bisht D., 2020, Current status of genomic resources on wild relatives of rice, Breeding Science, 70(2): 135-144. https://doi.org/10.1270/jsbbs.19064. Lakew T., Tanaka K., and Ishikawa R., 2021, Genetic diversity of African wild rice (Oryza longistaminata Chev., et Roehr) at the edge of its distribution, Genetic Resources and Crop Evolution, 68: 1769-1784. https://doi.org/10.1007/s10722-020-01080-6. Li Y., Zhou G., Ma J., Jiang W., Jin L., Zhang Z., Guo Y., Zhang J., Sui Y., Zheng L., Zhang S., Zuo Q., Shi X., Li Y., Zhang W., Hu Y., Kong G., Hong H., Tan B., Song J., Liu Z., Wang Y., Ruan H., Yeung C., Liu J., Wang H., Zhang L., Guan R., Wang K., Li W., Chen S., Chang R., Jiang Z., Jackson S., Li R., and Qiu L., 2014, De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits, Nature Biotechnology, 32(10): 1045-1052. https://doi.org/10.1038/nbt.2979. Liu W., Shahid M., Bai L., Lu Z., Chen Y., Jiang L., Diao M., Liu X., and Lu Y., 2015, Evaluation of genetic diversity and development of a core collection of wild rice (Oryza rufipogon Griff.) populations in China, PLoS One, 10(12): e0145990. https://doi.org/10.1371/journal.pone.0145990. Mammadov J., Buyyarapu R., Guttikonda S., Parliament K., Abdurakhmonov I., and Kumpatla S., 2018, Wild relatives of maize rice cotton and soybean: treasure troves for tolerance to biotic and abiotic stresses, Frontiers in Plant Science, 9: 886. https://doi.org/10.3389/fpls.2018.00886. Nevo E., 2006, Genome evolution of wild cereal diversity and prospects for crop improvement, Plant Genetic Resources, 4(1): 36-46. https://doi.org/10.1079/PGR2006108. Ni J., Colowit P., and Mackill D., 2002, Evaluation of genetic diversity in rice subspecies using microsatellite markers, Crop Science, 42(2): 601-607. https://doi.org/10.2135/CROPSCI2002.6010. Quan R., Wang J., Hui J., Bai H., Lyu X., Zhu Y., Zhang H., Zhang Z., Li S., and Huang R., 2018, Improvement of salt tolerance using wild rice genes, Frontiers in Plant Science, 8: 2269. https://doi.org/10.3389/fpls.2017.02269. Roy S., Banerjee A., Mawkhlieng B., Misra A., Pattanayak A., Harish G., Singh S., Ngachan S., and Bansal K., 2015, Genetic diversity and population structure in aromatic and quality rice (Oryza sativa L.) landraces from North-Eastern India, PLoS One, 10(6): e0129607. https://doi.org/10.1371/journal.pone.0129607. Stein J., Yu Y., Copetti D., Zwickl D., Zhang L., Zhang C., Chougule K., Gao D., Iwata A., Goicoechea J., Wei S., Wang J., Liao Y., Wang M., Jacquemin J., Becker C., Kudrna D., Zhang J., Londono C., Song X., Lee S., Sanchez P., Zuccolo A., Ammiraju J., Talag J., Danowitz A., Rivera L., Gschwend A., Noutsos C., Wu C., Kao S., Zeng J., Wei F., Zhao Q., Feng Q., Baidouri M., Carpentier M., Lasserre E., Cooke R., Farias D., Maia L., Santos R., Nyberg K., McNally K., Mauleon R., Alexandrov N., Schmutz J., Flowers D., Fan C., Weigel D., Jena K., Wicker T., Chen M., Han B., Henry R., Hsing Y., Kurata N., Oliveira A., Panaud O., Jackson S., Machado C., Sanderson M., Long M., Ware D., and Wing R., 2018, Genomes of 13 domesticated and wild rice relatives highlight genetic conservation turnover and innovation across the genus Oryza, Nature Genetics, 50(2): 285-296. https://doi.org/10.1038/s41588-018-0040-0. Sun C., Wang X., Li Z., Yoshimura A., and Iwata N., 2001, Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O., sativa L.) using RFLP markers, Theoretical and Applied Genetics, 102: 157-162. https://doi.org/10.1007/s001220051631. Xie X., and Liu Y., 2021, De novo domestication towards new crops, National Science Review, 8(4): nwab033. https://doi.org/10.1093/nsr/nwab033. Xu X., Liu X., Ge S., Jensen J., Hu F., Li X., Dong Y., Gutenkunst R., Fang L., Huang L., Li J., He W., Zhang G., Zheng X., Zhang F., Li Y., Yu C., Kristiansen K., Zhang X., Wang J., Wright M., McCouch S., Nielsen R., Wang J., and Wang W., 2011, Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes, Nature Biotechnology, 30(1): 105-111. https://doi.org/10.1038/nbt.2050. Yadav M., Aravindan S., Ngangkham U., Raghu S., Prabhukarthikeyan S., Keerthana U., Marndi B., Adak T., Munda S., Deshmukh R., Pramesh D., Samantaray S., and Rath P., 2019, Blast resistance in Indian rice landraces: genetic dissection by gene specific markers, PLoS One, 14(1): e0211061. https://doi.org/10.1371/journal.pone.0211061.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==