RGG_2024v15n3

Rice Genomics and Genetics 2024, Vol.15, No.3, 106-120 http://cropscipublisher.com/index.php/rgg 119 Li W., Li K., Huang Y., Shi C., Hu W., Zhang Y., Zhang Q., Xia E., Hutang G., Zhu X., Liu Y., Liu Y., Tong Y., Zhu T., Huang H., Zhang D., Zhao Y., Jiang W., Yuan J., Niu Y., Gao C., and Gao L., 2020, SMRT sequencing of the Oryza rufipogon genome reveals the genomic basis of rice adaptation, Communications Biology, 3(1): 167. https://doi.org/10.1038/s42003-020-0890-8 Mahajan R., and Kapoor N., 2019, Molecular breeding strategies for genetic improvement in rice (Oryza sativa L.), advances in plant breeding strategies, Cereals, 5: 317-341. https://doi.org/10.1007/978-3-030-23108-8_8 Melaku G., Labroo M., Liyu H., Shilai Z., Guangfu H., Jing Z., Tesfaye K., Haileselassie T., and Hu F., 2019, Genetic diversity and differentiation of the African wild rice (Oryza longistaminata chev., et roehr) in Ethiopia, Scientific African, 6: e00138. https://doi.org/10.1016/j.sciaf.2019.e00138 Mishra R., Joshi R., and Zhao K., 2018, Genome editing in rice: recent advances challenges and future implications, Frontiers in Plant Science, 9: 1361. https://doi.org/10.3389/fpls.2018.01361 Mussurova S., Al-Bader N., Zuccolo A., and Wing R., 2020, Potential of platinum standard reference genomes to exploit natural variation in the wild relatives of rice, Frontiers in Plant Science, 11: 579980. https://doi.org/10.3389/fpls.2020.579980 Quan R., Wang J., Hui J., Bai H., Lyu X., Zhu Y., Zhang H., Zhang Z., Li S., and Huang R., 2018, Improvement of salt tolerance using wild rice genes, Frontiers in Plant Science, 8: 2269. https://doi.org/10.3389/fpls.2017.02269 Ricachenevsky F., and Sperotto R., 2016, Into the wild: Oryza species as sources for enhanced nutrient accumulation and metal tolerance in rice, Frontiers in Plant Science, 7: 974. https://doi.org/10.3389/fpls.2016.00974 Solis C., Yong M., Vinarao R., Jena K., Holford P., Shabala L., Zhou M., Shabala S., and Chen Z., 2020, Back to the wild: on a quest for donors toward salinity tolerant rice, Frontiers in Plant Science, 11: 323. https://doi.org/10.3389/fpls.2020.00323 Tarang A., Kordrostami M., Kumleh A., Chaleshtori M., Saravani A., Ghanbarzadeh M., and Sattari M., 2020, Study of genetic diversity in rice (Oryza sativa L.) cultivars of Central and Western Asia using microsatellite markers tightly linked to important quality and yield related traits, Genetic Resources and Crop Evolution, 67: 1537-1550. https://doi.org/10.1007/s10722-020-00927-2 Wambugu P.W., Ndjiondjop M., N., and Henry R., 2021, Genetics and genomics of African rice (Oryza glaberrima Steud) domestication, Rice, 14(1): 6. https://doi.org/10.1186/s12284-020-00449-6 Wambugu P., Ndjiondjop M., and Henry R., 2019, Advances in molecular genetics and genomics of African rice (Oryza glaberrima Steud), Plants, 8(10): 376. https://doi.org/10.3390/plants8100376 Wang D., Kantar M., Murugaiyan V., and Neyhart J., 2023, Where the wild things are: genetic associations of environmental adaptation in the Oryza rufipogon species complex, Genes Genomes Genetics, 13(8): jkad128. https://doi.org/10.1093/g3journal/jkad128 Withanawasam D., Kommana M., Pulindala S., Eragam A., Moode V., Kolimigundla A., Puram R., Palagiri S., Balam R., and Vemireddy L., 2022., Improvement of grain yield under moisture and heat stress conditions through marker-assisted pedigree breeding in rice (Oryza sativa L.), Crop and Pasture Science, 73(4): 356-369. https://doi.org/10.1071/CP21410 Xu Y., Ma K., Zhao Y., Wang X., Zhou K., Yu G., Li C., Li P., Yang Z., Xu C., and Xu S., 2021, Genomic selection: a breakthrough technology in rice breeding, The Crop Journal, 9(3): 669-677. https://doi.org/10.1016/J.CJ.2021.03.008 Yu H., Lin T., Meng X., Du H., Zhang J., Liu G., Chen M., Jing Y., Kou L., Li X., Gao Q., Liang Y., Liu X., Fan Z., Liang Y., Cheng Z., Chen M., Tian Z., Wang Y., Chu C., Zuo J., Wan J., Qian Q., Han B., Zuccolo A., Wing R., Gao C., Liang C., and Li J., 2021, A route to de novo domestication of wild allotetraploid rice, Cell, 184(5): 1156-1170. https://doi.org/10.1016/j.cell.2021.01.013 Yuan R., Zhao N., Usman B., Luo L., Liao S., Qin Y., Nawaz G., and Li R., 2020, Development of chromosome segment substitution lines (CSSLs) derived from Guangxi wild rice (Oryza rufipogon Griff.) under rice (Oryza sativa L.) background and the identification of QTLs for plant architecture agronomic traits and cold tolerance, Genes,11(9): 980. https://doi.org/10.3390/genes11090980 Zafar K., Sedeek K., Rao G., Khan M., Amin I., Kamel R., Mukhtar Z., Zafar M., Mansoor S., and Mahfouz M., 2020, Genome editing technologies for rice improvement: progress prospects and safety concerns, Frontiers in Genome Editing, 2: 5. https://doi.org/10.3389/fgeed.2020.00005 Zhang F., Wang C., Li M., Cui Y., Shi Y., Wu Z., Hu Z., Wang W., Xu J., and Li Z., 2021., The landscape of gene-CDS-haplotype diversity in rice (Oryza sativa L.): properties population organization footprints of domestication and breeding and implications in genetic improvement, Molecular Plant, 14(5): 787-804. https://doi.org/10.1016/j.molp.2021.02.003

RkJQdWJsaXNoZXIy MjQ4ODYzNA==