RGG_2024v15n3

Rice Genomics and Genetics 2024, Vol.15, No.3, 94-105 http://cropscipublisher.com/index.php/rgg 104 Bouillé M., Senneville S., and Bousquet J., 2011, Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea, Tree Genetics and Genomes, 7: 469-484. https://doi.org/10.1007/s11295-010-0349-z Buso G., Rangel P., and Ferreira M., 2001, Analysis of random and specific sequences of nuclear and cytoplasmic DNA in diploid and tetraploid American wild rice species (Oryza spp.), Genome, 44(3): 476-494. https://doi.org/10.1139/G01-019 Dally A., and Sécond G., 1990, Chloroplast DNA diversity in wild and cultivated species of rice (Genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis, Theoretical and Applied Genetics, 80: 209-222. https://doi.org/10.1007/BF00224389 Huang X., Kurata N., Wei X., Wang Z., Wang A., Zhao Q., Zhao Y., Liu K., Lu H., Li W., Guo Y., Lu Y., Zhou C., Fan D., Weng Q., Zhu C., Huang T., Zhang L., Wang Y., Feng L., Furuumi H., Kubo T., Miyabayashi T., Yuan X., Xu Q., Dong G., Zhan Q., Li C., Fujiyama A., Toyoda A., Lu T., Feng Q., Qian Q., Li J., and Han B., 2012, A map of rice genome variation reveals the origin of cultivated rice, Nature, 490: 497-501. https://doi.org/10.1038/nature11532 Joshi S., Gupta V., Aggarwal R., Ranjekar P., and Brar D., 2000, Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza, Theoretical and Applied Genetics, 100: 1311-1320. https://doi.org/10.1007/s001220051440 Mathan J., Singh A., Jathar V., and Ranjan A., 2021, High photosynthesis rate in the selected wild rice is driven by leaf anatomy mediating high Rubisco activity and electron transport rate, Journal of Experimental Botany, 3(6): 31-56. https://doi.org/10.1093/jxb/erab313. Nishikawa T., Vaughan D., and Kadowaki K., 2005, Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes, Theoretical and Applied Genetics, 110: 696-705. https://doi.org/10.1007/s00122-004-1895-2 Ohyanagi H., Ebata T., Huang X., Gong H., Fujita M., Mochizuki T., Toyoda A., Fujiyama A., Kaminuma E., Nakamura Y., Feng Q., Wang Z., Han B., and Kurata N., 2015, Oryza Genome: genome diversity database of wild Oryza species, Plant and Cell Physiology, 57: e1. https://doi.org/10.1093/pcp/pcv171 Shaw J., Shaw J., Shafer H., Leonard O., Kovach M., Schorr M., and Morris A., 2014, Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV, American Journal of Botany, 101(11): 1987-2004. https://doi.org/10.3732/ajb.1400398 Song Y., Chen Y., Lv J., Xu J., Zhu S., Li M., and Chen N., 2017, Development of chloroplast genomic resources for Oryza species discrimination, Frontiers in Plant Science, 8:69. https://doi.org/10.3389/fpls.2017.01854 Spano C., Häussermann V., Acuña F., Griffiths C., Seeb L., and Gomez-Uchida D., 2018, Hierarchical biogeographical processes largely explain the genomic divergence pattern in a species complex of sea anemones (Metridioidea: Sagartiidae: Anthothoe), Molecular Phylogenetics and Evolution, 127: 217-228. https://doi.org/10.1016/j.ympev.2018.05.022 Stein J., Yu Y., Copetti D., Zwickl D., Zhang L., Zhang C., Chougule K., Gao D., Iwat A., Goicoechea J., Wei S., Wang J., Liao Y., Wang M., Jacquemin J., Becker C., Kudrna D., Zhang J., Londono C., Song X., Lee S., Sanchez P., Zuccolo A., Ammiraju J., Talag J., Danowitz A., Rivera L., Gschwend A., Noutsos C., Wu C., Kao S., Zeng J., Wei F., Zhao Q., Feng Q., Baidouri M., Carpentier M., Lasserre E., Cooke R., Farias D., Maia L., Santos R., Nyberg K., McNally K., Mauleon R., Alexandrov N., Schmutz J., Flowers D., Fan C., Weigel D., Jena K., Wicker T., Chen M., Han B., Henry R., Hsing Y., Kurata N., Oliveira A., Panaud O., Jackson S., Machado C., Sanderson M., Long M., Ware D., and Wing R., 2018, Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza, Nature Genetics, 50: 285-296. https://doi.org/10.1038/s41588-018-0040-0 Takehana Y., Naruse K., and Sakaizumi M., 2005, Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences, Molecular Phylogenetics and Evolution, 36(2): 417-428. https://doi.org/10.1016/J.YMPEV.2005.01.016 Tang L., Zou X., Achoundong G., Potgieter C., Sécond G., Zhang D., and Ge S., 2010, Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments, Molecular Phylogenetics and Evolution, 54(1): 266-277. https://doi.org/10.1016/j.ympev.2009.08.007 Torke B., Cardoso D., Chang H., Li S., Niu M., Pennington R., Stirton C., Xu W., Zartman C., and Chung K., 2021, A dated molecular phylogeny and biogeographical analysis reveals the evolutionary history of the trans-Pacifically disjunct tropical tree genus Ormosia (Fabaceae), Molecular Phylogenetics and Evolution, 3: 107329. https://doi.org/10.1016/j.ympev.2021.107329 Wambugu P., Brozynska M., Furtado A., Waters D., and Henry R., 2015, Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences, Scientific Reports, 5: 11-29. https://doi.org/10.1038/srep13957

RkJQdWJsaXNoZXIy MjQ4ODYzNA==