RGG_2024v15n2

Rice Genomics and Genetics 2024, Vol.15, No.2, 83-93 http://cropscipublisher.com/index.php/rgg 92 Eizenga G., Sanchez P., Jackson A., Edwards J., Hurwitz B., Wing R., and Kudrna D., 2017, Genetic variation for domestication-related traits revealed in a cultivated rice, Nipponbare (Oryza sativa ssp. japonica)×ancestral rice, O. nivara, mapping population, Molecular Breeding, 37: 1-22. https://doi.org/10.1007/s11032-017-0734-5. Fujino K., Hirayama Y., Obara M., and Ikegaya T., 2019, Introgression of the chromosomal region with the Pi-cd locus fromOryza meridionalis into O. sativa L. during rice domestication, Theoretical and Applied Genetics, 132: 1981-1990. https://doi.org/10.1007/s00122-019-03332-1. Fuller D., and Weisskopf A., 2011, The early rice project: from domestication to global warming, Artificial Intelligence, 13: 44-51. https://doi.org/10.5334/AI.1314. Fuller D., Qin L., Zheng Y., Zhao Z., Chen X., Hosoya L., and Sun G., 2009, The domestication process and domestication rate in rice: spikelet bases from the lower yangtze, Science, 323: 1607-1610. https://doi.org/10.1126/science.1166605. Gross B., and Zhao Z., 2014, Archaeological and genetic insights into the origins of domesticated rice, Proceedings of the National Academy of Sciences, 111: 6190-6197. https://doi.org/10.1073/pnas.1308942110. Hoyos V., Plaza G., Li X., and Caicedo A., 2020, Something old, something new: evolution of Colombian weedy rice (Oryza spp.) through de novo de-domestication, exotic gene flow, and hybridization, Evolutionary Applications, 13: 1968-1983. https://doi.org/10.1111/eva.12955. Huang X., Kurata N., Wei X., Wang Z., Wang A., Zhao Q., Zhao Y., Liu K., Lu H., Li W., Guo Y., Lu Y., Zhou C., Fan D., Weng Q., Zhu C., Huang T., Zhang L., Wang Y., Feng L., Furuumi H., Kubo T., Miyabayashi T., Yuan X., Xu Q., Dong G., Zhan Q., Li C., Fujiyama A., Toyoda A., Lu T., Feng Q., Qian Q., Li J., and Han B., 2012, A map of rice genome variation reveals the origin of cultivated rice, Nature, 490: 497-501. https://doi.org/10.1038/nature11532. Izawa T., 2008, The process of rice domestication: a new model based on recent data, Rice, 1: 127-134. https://doi.org/10.1007/s12284-008-9014-7. Jia Y., Zou D., Wang J., Sha H., Liu H., Inayat M., Sun J., Zheng H., Xia N., and Zhao H., 2017, Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage, Journal of Plant Growth Regulation, 36: 240-253. https://doi.org/10.1007/s00344-016-9634-x. Kovach M., Sweeney M., and McCouch S., 2007, New insights into the history of rice domestication, Trends in Genetics: TIG, 23(11): 578-587. https://doi.org/10.1016/J.TIG.2007.08.012. Li C., Zhou A., and Sang T., 2006, Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara, The New phytologist, 170(1): 185-193. https://doi.org/10.1111/J.1469-8137.2005.01647.X. Liu T., Liu Y., Sun Q., Zong Y., Finlayson B., and Chen Z., 2017, Early Holocene groundwater table fluctuations in relation to rice domestication in the middle Yangtze River basin, China, Quaternary Science Reviews, 155: 79-85. https://doi.org/10.1016/J.QUASCIREV.2016.11.015. Ma Y., Yang X., Huan X., Gao Y., Wang W., Li Z., Ma Z., Perry L., Sun G., Jiang L., Jin G., and Lu H., 2018, Multiple indicators of rice remains and the process of rice domestication: a case study in the lower Yangtze River region, China, PLoS One, 6: 13. https://doi.org/10.1371/journal.pone.0208104. Ma Y., Yang X., Huan X., Wang W., Ma Z., Li, Z., Sun G., Jiang L., Zhuang Y., and Lu H., 2016, Rice bulliform phytoliths reveal the process of rice domestication in the Neolithic Lower Yangtze River region, Quaternary International, 426: 126-132. https://doi.org/10.1016/J.QUAINT.2016.02.030. Nasu H., and Momohara A., 2016, The beginnings of rice and millet agriculture in prehistoric Japan, Quaternary International, 397: 504-512. https://doi.org/10.1016/J.QUAINT.2015.06.043. Schaarschmidt S., Lawas L., Lawas L., Glaubitz U., Li X., Erban A., Kopka J., Jagadish S., Jagadish S., Hincha D., and Zuther E., 2020, Season affects yield and metabolic profiles of rice (Oryza sativa) under high night temperature stress in the field, International Journal of Molecular Sciences, 4: 21. https://doi.org/10.3390/ijms21093187. Wang H., Vieira F., Crawford J., Chu C., and Nielsen R., 2017, Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice, Genome Research, 27: 1029-1038. https://doi.org/10.1101/gr.204800.116. Wang J., Zhu J., Lei D., and Jiang L., 2022, New evidence for rice harvesting in the early Neolithic Lower Yangtze River, China, PLoS One, 17(12): e0278200. https://doi: 10.1371/journal.pone.0278200. Wang M., Yu Y., Haberer G., Marri P., Fan C., Goicoechea J., Zuccolo A., Song X., Kudrna D., Ammiraju J., Cossu R., Maldonado C., Chen J., Lee S., Sisneros N., Baynast K., Golser W., Wissotski M., Kim W., Sanchez P., Ndjiondjop M., Sanni K., Long M., Carney J., Panaud O., Wicker T., Machado C., Chen M., Mayer K., Rounsley S., and Wing R., 2014, The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication, Nature Genetics, 46: 982-988. https://doi.org/10.1038/ng.3044. Wei X., Qiao W., Chen Y., Wang R., Cao L., Zhang W., Yuan N., Li Z., Zeng H., and Yang Q., 2012, Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon, Molecular Ecology, 5: 21.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==