RGG_2024v15n1

Rice Genomics and Genetics 2024, Vol.15, No.1, 1-11 http://cropscipublisher.com/index.php/rgg 11 References Andrási N., Pettkó-Szandtner A., and Szabados L., 2021, Diversity of plant heat shock factors: regulation, interactions, and functions, Journal of Experimental Botany, 72: 1558-1575. https://doi.org/10.1093/jxb/eraa576 Asad M., Zakari S., Zhao Q., Zhou L., Ye Y., and Cheng F., 2019, Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death: premature leaf senescence in plants, International Journal of Molecular Sciences, 20: 256-264. https://doi.org/10.3390/ijms20020256 Chaturvedi P., Wiese A.J., Ghatak A., Záveská Drábková L., Weckwerth W., and Honys D., 2021, Heat stress response mechanisms in pollen development, New Phytologist, 231: 571-585. https://doi.org/10.1111/nph.17380 Devireddy A.R., Zandalinas S.I., Fichman Y., and Mittler R., 2021, Integration of reactive oxygen species and hormone signaling during abiotic stress, The Plant Journal, 105: 459-476. https://doi.org/10.1111/tpj.15010 Fan J., Liu J., and Gong Z.Y., 2020, The false smut pathogen Ustilaginoidea virens requires rice stamens for false smut ball formation, Environmental Microbiology, 22(2): 646-659. https://doi.org/10.1111/1462-2920.14881 Hsu P.K., Dubeaux G., Takahashi Y., and Schroeder J.I., 2021, Signaling mechanisms in abscisic acid-mediated stomatal closure, The Plant Journal, 105: 307-321. https://doi.org/10.1111/tpj.15067 Jiang N., Yu P., Fu W., Li G., Feng B., and Chen T., 2020, Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelet, Plant, Cell and Environment, 43: 1273-1287. https://doi.org/10.1111/pce.13733 Lewandowska D., Orr J., Schreiber M., Colas I., Ramsay L., and Zhang R., 2022, The proteome of developing barley anthers during meiotic prophase, Journal of Experimental Botany, 73: 1464-1482. https://doi.org/10.1093/jxb/erab494 Matsumura H., Shiomi K., and Yamamoto A., 2020, Hybrid Rubisco with complete replacement of rice Rubisco small subunits by sorghum counterparts confers C4 plant-like high catalytic activity, Molecular Plant, 13(11): 1570-1581. https://doi.org/10.1016/j.molp.2020.08.012 Xing J.X., Zhang D.Y., Yin F.U., Zhong Q.F., Wang B., Xiao S.Q., Ke X., Wang L.X., Zhang Y., Zhao G.M., Lu Y.D., Chen L., Cheng Z.Q., and Chen L.J., 2021, Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an Introgression Line of Yuanjiang Common Wild Rice (Oryza rufipogon), Plant Disease, 105(12): 4106-4112. https://doi.org/10.1094/PDIS-05-21-0939-RE Zhang G.L., Chen L.Y., Zhang S.T., Liu G.H., Tang W.B., Li M.H., Lei D.Y., and Chen X.B., 2008, Effects of high temperature stress on pollen characters and anther microstructure of rice, Acta Ecologica Sinica, 28(3): 1089-1097. Zhao Q., Guan X.Y., Zhou L.J., Asad M.A.U., Xu Y.Q., Pan G., and Cheng F.M., 2023, ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion, Plant, Cell & Environment, 46(5): 1453-1471. https://doi.org/10.1111/pce.14551 Zhao Q.H., Ma T.C., Xia J.F., Wang Y.L., Zhao B., Wang Q., Zhu C.L., and Li Z.F., 2013, Progress on response of rice flower organs and rice quality to heat stress, Shengwu Jishu Jinzhan (Current Biotechnology), 3(3): 162-165. Zheng S., Li J., Ma L., Wang H., Zhou H., and Ni E., 2019, OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers, Proceedings of the National Academy of Sciences, 116: 7549-7558. https://doi.org/10.1073/pnas.1817675116 Zhong R.L., Wang Y.X., Gai R.N., Xi D.D., Mao C.J., and Ming F., 2020, Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses, Plant Science, 292: 110373-110385. https://doi.org/10.1016/j.plantsci.2019.110373

RkJQdWJsaXNoZXIy MjQ4ODYzNA==