MGG_2025v16n6

Maize Genomics and Genetics 2025, Vol.16, No.6, 325-333 http://cropscipublisher.com/index.php/mgg 332 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Ahmad S., Cui W., Kamran M., Ahmad I., Meng X., Wu X., Su W., Javed T., El‐Serehy H., Jia Z., and Han Q., 2020, Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling, Journal of Plant Growth Regulation, 40: 1270-1283. https://doi.org/10.1007/s00344-020-10187-0 Bartels A., Han Q., Nair P., Stacey L., Gaynier H., Mosley M., Huang Q., Pearson J., Hsieh T., An Y., and Xiao W., 2018, Dynamic DNA methylation in plant growth and development, International Journal of Molecular Sciences, 19(7): 2144. https://doi.org/10.3390/ijms19072144 Beck D., Maamar M., and Skinner M., 2021, Genome-wide CpG density and DNA methylation analysis method (MeDIP, RRBS, and WGBS) comparisons, Epigenetics, 17: 518-530. https://doi.org/10.1080/15592294.2021.1924970 Domb K., Katz A., Harris K., Yaari R., Kaisler E., Nguyen V., Hong U., Griess O., Heskiau K., Ohad N., and Zemach A., 2020, DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation, Proceedings of the National Academy of Sciences, 117: 33700-33710. https://doi.org/10.1073/pnas.2011361117 Eprintsev A., Anokhina G., Selivanova P., Moskvina P., and Igamberdiev A., 2024, Biochemical and epigenetic regulation of glutamate metabolism in maize (Zeamays L.) leaves under salt stress, Plants, 13(18): 2651. https://doi.org/10.3390/plants13182651 Farooq M., Hussain M., Wakeel A., and Siddique K., 2015, Salt stress in maize: effects, resistance mechanisms, and management. A review, Agronomy for Sustainable Development, 35: 461-481. https://doi.org/10.1007/s13593-015-0287-0 Fedorin D., Eprintsev A., Caro O., and Igamberdiev A., 2022, Effect of salt stress on the activity, expression, and promoter methylation of succinate dehydrogenase and succinic semialdehyde dehydrogenase in maize (Zeamays L.) leaves, Plants, 12(1): 68. https://doi.org/10.3390/plants12010068 García-García I., Méndez-Cea B., Horreo J., Linares J., and Gallego F., 2024, DNA methylation analysis in plant gigagenomes: comparing two bisulfite sequencing techniques in Abies alba trees affected by dieback, Silvae Genetica, 73: 201-205. https://doi.org/10.2478/sg-2024-0020 Hajlaoui H., Ayeb N., Garrec J., and Denden M., 2010, Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zeamays L.) varieties, Industrial Crops and Products, 31: 122-130. https://doi.org/10.1016/j.indcrop.2009.09.007 He S., Wang H., Lv M., Li S., Song J., Wang R., Jiang S., Jiang L., Zhang S., and Li X., 2024, Nanopore direct rna sequencing reveals the short-term salt stress response in maize roots, Plants, 13(3): 405. https://doi.org/10.3390/plants13030405 Hu D., Li R., Dong S., Zhang J., Zhao B., Ren B., Ren H., Yao H., Wang Z., and Liu P., 2022, Maize (Zea mays L.) responses to salt stress in terms of root anatomy, respiration and antioxidative enzyme activity, BMC Plant Biology, 22: 602. https://doi.org/10.1186/s12870-022-03972-4 Ji M., Xu S., Ma Z., Xiao C., Xu J., Zhu Y., Cai R., and Bo C., 2025, Maize leaves salt-responsive genes revealed by comparative transcriptome of salt-tolerant and salt-sensitive cultivars during the seedling stage, PeerJ, 13: e19268. https://doi.org/10.7717/peerj.19268 Jiang Y., Li M., Qian Y., Rong H., Xie T., Wang S., Zhao H., Yang L., Wang Q., and Cao Y., 2025, Analysis of the transcriptome provides insights into the photosynthate of maize response to salt stress by 5-aminolevulinic acid, International Journal of Molecular Sciences, 26(2): 786. https://doi.org/10.3390/ijms26020786 Li P., Yang X., Wang H., Pan T., Wang Y., Xu Y., Xu C., and Yang Z., 2021, Genetic control of root plasticity in response to salt stress in maize, Theoretical and Applied Genetics, 134: 1475-1492. https://doi.org/10.1007/s00122-021-03784-4 Li Q., Hermanson P., and Springer N., 2018, Detection of DNA methylation by whole-genome bisulfite sequencing, Methods in Molecular Biology, 1676: 185-196. https://doi.org/10.1007/978-1-4939-7315-6_11 Liu P., Zhang Y., Zou C., Yang C., Pan G., Ma L., and Shen Y., 2022, Integrated analysis of long non-coding RNAs and mRNAs reveals the regulatory network of maize seedling root responding to salt stress, BMC Genomics, 23: 50. https://doi.org/10.1186/s12864-021-08286-7 Maimaiti A., Gu W., Yu D., Guan Y., Qu J., Qin T., Wang H., Ren J., Zheng H., and Wu P., 2025, Dynamic molecular regulation of salt stress responses in maize (Zeamays L.) seedlings, Frontiers in Plant Science, 16: 1535943. https://doi.org/10.3389/fpls.2025.1535943

RkJQdWJsaXNoZXIy MjQ4ODYzNA==