MGG_2025v16n6

Maize Genomics and Genetics 2025, Vol.16, No.6, 316-324 http://cropscipublisher.com/index.php/mgg 323 Dong X., Li B., Yan Z., Guan L., Huang S., Li S., Qi Z., Tang L., Tian H., Fu Z., and Yang H., 2023, Impacts of high temperature, relative air humidity, and vapor pressure deficit on seed set of contrasting maize genotypes during flowering, Journal of Integrative Agriculture, 23(9): 2955-2969. https://doi.org/10.1016/j.jia.2023.09.007 Du L., Zhang H., Xin W., Ma K., Du D., Yu C., and Liu Y., 2021, Dissecting the genetic basis of flowering time and height related-traits using two doubled haploid populations in maize, Plants, 10(8): 1585. https://doi.org/10.3390/plants10081585 Farid B., Saddique M., Tahir M., Ikram R., Ali Z., and Akbar W., 2025, Expression divergence of BAG gene family in maize under heat stress, BMC Plant Biology, 25: 16. https://doi.org/10.1186/s12870-024-06020-5 Gong W., Oubounyt M., Baumbach J., and Dresselhaus T., 2024, Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility, iScience, 27(7): 7110081. https://doi.org/10.1016/j.isci.2024.110081 Hosamani M., Shankergoud I., Zaidi P., Patil A., Vinayan M., Kuchanur P., Seetharam K., and Sekhar S., 2020, Genetic gain in testcrosses derived from heat tolerant multi-parental synthetic populations of maize, International Journal of Current Microbiology and Applied Sciences, 9: 2195-2205. https://doi.org/10.20546/ijcmas.2020.901.249 Inghelandt D., Frey F., Ries D., and Stich B., 2019, QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize, Scientific Reports, 9: 14418. https://doi.org/10.1038/s41598-019-50853-2 Leng P., Khan S., Zhang D., Zhou G., Zhang X., Zheng Y., Wang T., and Zhao J., 2022, Linkage mapping reveals qtl for flowering time-related traits under multiple abiotic stress conditions in maize, International Journal of Molecular Sciences, 23(15): 8410. https://doi.org/10.3390/ijms23158410 Long Y., Qin Q., Zhang J., Zhu Z., Liu Y., Gu L., Jiang H., and Si W., 2022, Transcriptomic and weighted gene co-expression network analysis of tropic and temperate maize inbred lines recovering from heat stress, Plant Science, 327: 111538. https://doi.org/10.1016/j.plantsci.2022.111538 Longmei N., Gill G., Zaidi P., Kumar R., Nair S., Hindu V., Vinayan M., and Vikal Y., 2021, Genome wide association mapping for heat tolerance in sub-tropical maize, BMC Genomics, 22: 154. https://doi.org/10.1186/s12864-021-07463-y Schaefer R., Michno J., and Myers C., 2017, Unraveling gene function in agricultural species using gene co-expression networks, Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1860(1): 53-63. https://doi.org/10.1016/j.bbagrm.2016.07.016 Shah S., Islam S., Mohammad F., and Siddiqui M., 2023, Gibberellic acid: a versatile regulator of plant growth, development and stress responses, Journal of Plant Growth Regulation, 42: 7352-7373. https://doi.org/10.1007/s00344-023-11035-7 Turc O., Bouteillé M., Fuad-Hassan A., Welcker C., and Tardieu F., 2016, The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize, The New Phytologist, 212(2): 377-388. https://doi.org/10.1111/nph.14053 Waadt R., Seller C., Hsu P., Takahashi Y., Munemasa S., and Schroeder J., 2022, Plant hormone regulation of abiotic stress responses, Nature Reviews Molecular Cell Biology, 23: 680-694. https://doi.org/10.1038/s41580-022-00479-6 Wang N., Liu Q., Ming B., Shang W., Zhao X., Wang X., Wang J., Zhang J., Luo Z., and Liao Y., 2022, Impacts of heat stress around flowering on growth and development dynamic of maize (Zeamays L.) ear and yield formation, Plants, 11(24): 3515. https://doi.org/10.3390/plants11243515 Wang X., Lu J., Han M., Wang Z., Zhang H., Liu Y., Zhou P., Fu J., and Xie Y., 2024, Genome-wide expression quantitative trait locus analysis reveals silk-preferential gene regulatory network in maize, Physiologia Plantarum, 176(3): e14386. https://doi.org/10.1111/ppl.14386 Wang X., Tian X., Zhang H., Li H., Zhang S., Li H., and Zhu J., 2023, Genome‑wide analysis of the maize LACS gene family and functional characterization of the ZmLACS9 responses to heat stress, Plant Stress, 10: 100271. https://doi.org/10.1016/j.stress.2023.100271 Wang Y., Sheng D., Zhang P., Dong X., Yan Y., Hou X., Wang P., and Huang S., 2020, High temperature sensitivity of kernel formation in different short periods around silking in maize, Environmental and Experimental Botany, 183: 104343. https://doi.org/10.1016/j.envexpbot.2020.104343 Wang Y., Tao H., Tian B., Sheng D., Xu C., Zhou H., Huang S., and Wang P., 2019, Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering, Environmental and Experimental Botany, 158: 80-88. https://doi.org/10.1016/j.envexpbot.2018.11.007 Xia X., Zhou Y., Shi K., Zhou J., Foyer C., and Yu J., 2015, Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance, Journal of Experimental Botany, 66(10): 2839-2856. https://doi.org/10.1093/jxb/erv089

RkJQdWJsaXNoZXIy MjQ4ODYzNA==