Maize Genomics and Genetics 2025, Vol.16, No.6, 304-315 http://cropscipublisher.com/index.php/mgg 314 He K., Yu T., Gao S., Chen S., Li L., Zhang X., Huang C., Xu Y., Wang J., Prasanna B., Hearne S., Li X., and Li H., 2025, Leveraging automated machine learning for environmental data-driven genetic analysis and genomic prediction in maize hybrids, Advanced Science, 12(17): 2412423. https://doi.org/10.1002/advs.202412423 Kaler A., Purcell L., Beissinger T., and Gillman J., 2022, Genomic prediction models for traits differing in heritability for soybean, rice, and maize, BMC Plant Biology, 22: 87. https://doi.org/10.1186/s12870-022-03479-y Krause M., Dias K., Santos J., Oliveira A., Guimarães L., Pastina M., Margarido G., and Garcia A., 2020, Boosting predictive ability of tropical maize hybrids via genotype-by-environment interaction under multivariate GBLUP models, Crop Science, 60: 3049-3065. https://doi.org/10.1002/csc2.20253 Li D., Xu Z., Gu R., Wang P., Xu J., Du D., Fu J., Wang J., Zhang H., and Wang G., 2021, Genomic prediction across structured hybrid populations and environments in maize, Plants, 10(6): 1174. https://doi.org/10.3390/plants10061174 Lopez-Cruz M., Aguate F., Washburn J., De León N., Kaeppler S., Lima D., Tan R., Thompson A., De La Bretonne L., and De Los Campos G., 2023, Leveraging data from the Genomes-to-Fields initiative to investigate genotype-by-environment interactions in maize in North America, Nature Communications, 14: 6904. https://doi.org/10.1038/s41467-023-42687-4 Luo P., Yang R., Zhang L., Yang J., Wang H., Yong H., Zhang R., Li W., Wang F., Li M., Weng J., Zhang D., Zhou Z., Han J., Gao W., Xu X., Yang K., Zhang X., Fu J., Li X., Hao Z., and Ni Z., 2024, Genomic prediction of kernel water content in a hybrid population for mechanized harvesting in maize in Northern China, Agronomy, 14(12): 2795. https://doi.org/10.3390/agronomy14122795 Mora-Poblete F., Maldonado C., Henrique L., Uhdre R., Scapim C., and Mangolim C., 2023, Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach, Frontiers in Plant Science, 14: 1153040. https://doi.org/10.3389/fpls.2023.1153040 Popa C., Călugăr R., Varga A., Muntean E., Băcilă I., Vana C., Racz I., Tritean N., Berindean I., Ona A., and Muntean L., 2025, Evaluating maize hybrids for yield, stress tolerance, and carotenoid content: insights into breeding for climate resilience, Plants, 14(1): 138. https://doi.org/10.3390/plants14010138 Rice B., and Lipka A., 2021, Diversifying maize genomic selection models, Molecular Breeding, 41: 33. https://doi.org/10.1007/s11032-021-01221-4 Rogers A., and Holland J., 2021, Environment-specific genomic prediction ability in maize using environmental covariates depends on environmental similarity to training data, G3 Genes|Genomes|Genetics,12(2): jkab440. https://doi.org/10.1093/g3journal/jkab440 Roth M., Beugnot A., Mary-Huard T., Moreau L., Charcosset A., and Fiévet J., 2022, Improving genomic predictions with inbreeding and non-additive effects in two admixed maize hybrid populations in single and multi-environment contexts, Genetics, 220(4): iyac018. https://doi.org/10.1093/genetics/iyac018 Supriadi D., Bimantara Y., Zendrato Y., Widaryanto E., Kuswanto K., and Waluyo B., 2024, Assessment of genotype by environment and yield performance of tropical maize hybrids using stability statistics and graphical biplots, PeerJ, 12: e18624. https://doi.org/10.7717/peerj.18624 Tolley S., Brito L., Wang D., and Tuinstra M., 2023, Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models, Frontiers in Genetics, 14: 1221751. https://doi.org/10.3389/fgene.2023.1221751 Wang W., 2025, Review of breeding maize varieties for biofuel production, Journal of Energy Bioscience, 16(3): 151-162 http://dx.doi.org/10.5376/jeb.2025.16.0015 Wang J., Liu L., He K., Gebrewahid T., Gao S., Tian Q., Li Z., Song Y., Guo Y., Li Y., Cui Q., Zhang L., Wang J., Huang C., Li L., Guo T., and Li H., 2025, Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data, Journal of Integrative Plant Biology, 67(5): 1379-1394. https://doi.org/10.1111/jipb.13857 Xu Y., Zhang X., Li H., Zheng H., Zhang J., Olsen M., Varshney R., Prasanna B., and Qian Q., 2022, Smart breeding driven by big data, artificial intelligence and integrated genomic-enviromic prediction, Molecular Plant, 15(11): 1664-1695. https://doi.org/10.1016/j.molp.2022.09.001 Yu G., Cui Y., Jiao Y., Zhou K., Wang X., W. W., Xu Y., Yang K., Zhang X., Li P., Yang Z., Xu Y., and Xu C., 2022, Comparison of sequencing-based and array-based genotyping platforms for genomic prediction of maize hybrid performance, The Crop Journal, 11(2): 490-498. https://doi.org/10.1016/j.cj.2022.09.004 Yu G., Li F., Wang X., Zhang Y., Zhou K., Yang W., Guan X., Zhang X., Xu C., and Xu Y., 2024, Enhancing across-population genomic prediction for maize hybrids, Plants, 13(21): 3105. https://doi.org/10.3390/plants13213105 Yu K., Wang H., Liu X., Xu C., Li Z., Xu X., Liu J., Wang Z., and Xu Y., 2020, Large-scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources, Frontiers in Plant Science, 11: 660 https://doi.org/10.3389/fpls.2020.00660
RkJQdWJsaXNoZXIy MjQ4ODYzNA==