MGG_2025v16n6

Maize Genomics and Genetics 2025, Vol.16, No.6, 294-303 http://cropscipublisher.com/index.php/mgg 303 Sami A., Xue Z., Tazein S., Arshad A., Zhu Z., Chen Y., Zhu X., and Zhou K., 2021, CRISPR–Cas9-based genetic engineering for crop improvement under drought stress, Bioengineered, 12(1): 5814-5829. https://doi.org/10.1080/21655979.2021.1969831 Shelake R., Kadam U., Kumar R., Pramanik D., Singh A., and Kim J., 2022, Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives, Plant Communications, 3(2): 100417. https://doi.org/10.1016/j.xplc.2022.100417 Usman B., Nawaz G., Zhao N., Liao S., Liu Y., and Li R., 2020, Precise editing of the OsPYL9 gene by RNA-guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza sativa L.), International Journal of Molecular Sciences, 21(21): 7854. https://doi.org/10.3390/ijms21217854 Waititu J., Zhang X., Chen T., Zhang C., Zhao Y., and Wang H., 2021, Transcriptome analysis of tolerant and susceptible maize genotypes reveals novel insights into drought responses, International Journal of Molecular Sciences, 22(13): 6980. https://doi.org/10.3390/ijms22136980 Wang C., Zhou Y., Wang Y., Jiao P., Liu S., Guan S., and Yang Y., 2025, CRISPR-Cas9-mediated editing of ZmPL1 gene improves tolerance to drought stress in maize, GM Crops & Food, 16(1): 1-16. https://doi.org/10.1080/21645698.2024.2448869 Wang X., Guo Y., Wang Y., Peng Y., Zhang H., and Zheng J., 2024, ZmHDT103 negatively regulates drought stress tolerance in maize seedlings, Agronomy, 14(1): 134. https://doi.org/10.3390/agronomy14010134 Wang Y., Guo H., Wu X., Wang J., Li H., and Zhang R., 2022, Transcriptomic and physiological responses of contrasting maize genotypes to drought stress, Frontiers in Plant Science, 13: 928897. https://doi.org/10.3389/fpls.2022.928897 Wu X., Feng H., Wu D., Yan S., Zhang P., Wang W., Zhang J., Ye J., Dai G., Fan Y., Li W., Song B., Geng Z., Yang W., Chen G., Qin F., Terzaghi W., Stitzer M., Li L., Xiong L., Yan J., Buckler E., Yang W., and Dai M., 2021, Using high-throughput optical phenotyping to decipher the genetic architecture of maize drought tolerance, Genome Biology, 22(1): 185. https://doi.org/10.1186/s13059-021-02377-0 Xue C., and Greene E., 2021, DNA repair pathway choices in CRISPR-Cas9-mediated genome editing, Trends in Genetics, 37(9): 850-863. https://doi.org/10.1016/j.tig.2021.02.008 Ying Q.B., Chen Q., Lei K.Z., and Liu H.Z., 2025, Case study: breeding maize varieties with high protein content, Molecular Plant Breeding, 16(1): 93-104. http://dx.doi.org/10.5376/mpb.2025.16.0010 Young J., Zastrow-Hayes G., Deschamps S., Svitashev S., Zaremba M., Acharya A., Paulraj S., Peterson-Burch B., Schwartz C., Djukanovic V., Lenderts B., Feigenbutz L., Wang L., Alarcon C., Šikšnys V., May G., Chilcoat N., and Kumar S., 2019, CRISPR-Cas9 editing in maize: systematic evaluation of off-target activity and its relevance in crop improvement, Scientific Reports, 9(1): 6729. https://doi.org/10.1038/s41598-019-43141-6 Yousaf M., Riaz M., Shehzad A., Jamil S., Shahzad R., Kanwal S., Ghani A., Ali F., Abdullah M., Ashfaq M., and Hussain Q., 2023, Responses of maize hybrids to water stress conditions at different developmental stages, PeerJ, 11: e14983. https://doi.org/10.7717/peerj.14983 Zenda T., Liu S., Wang X., Liu G., Jin H., Dong A., Yang Y., and Duan H., 2019, Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines, International Journal of Molecular Sciences, 20(6): 1268. https://doi.org/10.3390/ijms20061268 Zhao Z., Guan Y., Qin T., Zheng H., Wang H., Xu W., Gu W., Yu D., Wei J., and Hu Y., 2025, A dirigent gene, ZmDIR11, positively regulates drought tolerance in maize, Agronomy, 15(3): 604. https://doi.org/10.3390/agronomy15030604 Zhou W., Yin J., Zhou Y., Li Y., He H., Yang Y., Wang X., Lian X., Dong X., Zhang Z., Chen L., and Hou S., 2025, DSD1/ZmICEb regulates stomatal development and drought tolerance in maize, Journal of Integrative Plant Biology, 67(6): 1487-1500. https://doi.org/10.1111/jipb.13890

RkJQdWJsaXNoZXIy MjQ4ODYzNA==