Maize Genomics and Genetics 2025, Vol.16, No.6, 294-303 http://cropscipublisher.com/index.php/mgg 302 Bashir S., Hussain A., Hussain S., Wani O., Nabi S., Dar N., Baloch F., and Mansoor S., 2021, Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms, Biotechnology & Biotechnological Equipment, 35(1): 1912-1925. https://doi.org/10.1080/13102818.2021.2020161 Cao L., Lu X., Wang G., Zhang Q., Zhang X., Fan Z., Cao Y., Wei L., Wang T., and Wang Z., 2021, Maize ZmbZIP33 is involved in drought resistance and recovery ability through an abscisic acid-dependent signaling pathway, Frontiers in Plant Science, 12: 629903. https://doi.org/10.3389/fpls.2021.629903 Chen M.L., 2025, Insights into optimizing cultivation practices for enhanced yield and quality in fresh-eating maize, Bioscience Methods, 16(1): 11-22. https://doi.org/10.5376/bm.2025.16.0002 Chen K., Wang Y., Zhang R., Zhang H., and Gao C., 2019, CRISPR/Cas genome editing and precision plant breeding in agriculture, Annual Review of Plant Biology, 70: 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049 Erdoğan İ., Cevher-Keskin B., Bilir Ö., Hong Y., and Tör M., 2023, Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance, Biology, 12(7): 1037. https://doi.org/10.3390/biology12071037 Gu L., Chen X., Hou Y., Cao Y., Wang H., Zhu B., Du X., and Wang H., 2024, ZmWRKY30 modulates drought tolerance in maize by influencing myo-inositol and reactive oxygen species homeostasis, Physiologia Plantarum, 176(4): e14423. https://doi.org/10.1111/ppl.14423 Gulzar F., Fu J., Zhu C., Yan J., Li X., Meraj T., Shen Q., Hassan B., and Wang Q., 2021, Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis, International Journal of Molecular Sciences, 22(18): 10080. https://doi.org/10.3390/ijms221810080 Jiang S., Sun Z., Feng Z., Qi Y., Chen H., Wang Y., Qi J., Guo Y., Yang S., and Gong Z., 2025, ZmCIPK33 and ZmSnRK2.10 mutually reinforce the abscisic acid signaling pathway for combating drought stress in maize, Journal of Integrative Plant Biology, 67(4): 13906. https://doi.org/10.1111/jipb.13906 Joshi R., Bharat S., and Mishra R., 2020, Engineering drought tolerance in plants through CRISPR/Cas genome editing, 3 Biotech, 10(8): 367. https://doi.org/10.1007/s13205-020-02390-3 Kumar M., Prusty M., Pandey M., Singh P., Bohra A., Guo B., and Varshney R., 2023, Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants, Frontiers in Plant Science, 14: 1157678. https://doi.org/10.3389/fpls.2023.1157678 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University Science B, 22(4): 253-284. https://doi.org/10.1631/jzus.b2100009 Li R., Wang Y., Li D., Guo Y., Zhou Z., Zhang M., Zhang Y., Würschum T., and Liu W., 2024, Meta-quantitative trait loci analysis and candidate gene mining for drought tolerance-associated traits in maize (Zeamays L.), International Journal of Molecular Sciences, 25(8): 4295. https://doi.org/10.3390/ijms25084295 Liu S., Li C., Wang H., Wang S., Yang S., Liu X., Yan J., Li B., Beatty M., Zastrow-Hayes G., Song S., and Qin F., 2020, Mapping regulatory variants controlling gene expression in drought response and tolerance in maize, Genome Biology, 21: 163. https://doi.org/10.1186/s13059-020-02069-1 Liu S., Liu X., Zhang X., Chang S., Chen C., and Qin F., 2022, Co-expression of ZmVPP1 with ZmNAC111 confers robust drought resistance in maize, Genes, 14(1): 8. https://doi.org/10.3390/genes14010008 Liu Y., Chen Z., Zhang C., Guo J., Liu Q., Yin Y., Hu Y., Xia H., Li B., Sun X., Li Y., and Liu X., 2023, Gene editing of ZmGA20ox3 improves plant architecture and drought tolerance in maize, Plant Cell Reports, 43(1): 1-16. https://doi.org/10.1007/s00299-023-03090-x Lorenzo C., Debray K., Herwegh D., Develtere W., Impens L., Schaumont D., Vandeputte W., Aesaert S., Coussens G., De Boe Y., Demuynck K., Van Hautegem T., Pauwels L., Jacobs T., Ruttink T., Nelissen H., and Inzé D., 2022, BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize, The Plant Cell, 34(12): 4567-4582. https://doi.org/10.1093/plcell/koac243 Namata M., Xu J., Habyarimana E., Palakolanu S., Wang L., and Li J., 2025, Genome editing in maize and sorghum: a comprehensive review of CRISPR/Cas9 and emerging technologies, The Plant Genome, 18(1): e70038. https://doi.org/10.1002/tpg2.70038 Pang Y., Cao L., Ye F., Chen C., Liang X., Song Y., and Lu X., 2024, Identification of the maize PP2C gene family and functional studies on the role of ZmPP2C15 in drought tolerance, Plants, 13(3): 340. https://doi.org/10.3390/plants13030340 Peer L., Bhat M., Lone A., Dar Z., and Mir B., 2024, Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zeamays): pathways to resilient agriculture, Planta, 260(4): 81. https://doi.org/10.1007/s00425-024-04517-9 Rai G., Khanday D., Kumar P., Magotra I., Choudhary S., Kosser R., Kalunke R., Giordano M., Corrado G., Rouphael Y., and Pandey S., 2023, Enhancing crop resilience to drought stress through CRISPR-Cas9 genome editing, Plants, 12(12): 2306.
RkJQdWJsaXNoZXIy MjQ4ODYzNA==