Maize Genomics and Genetics 2025, Vol.16, No.6, 284-293 http://cropscipublisher.com/index.php/mgg 293 Sun J., and Xia Y., 2023, Pretreating and normalizing metabolomics data for statistical analysis, Genes and Diseases, 11(5): 1450-1461. https://doi.org/10.1016/j.gendis.2023.04.018 Ullah M., Mahmood A., Alawadi H., Seleiman M., Khan B., Javaid M., Wahid A., Abdullah F., and Wasonga D., 2025, Silicon-mediated modulation of maize growth, metabolic responses, and antioxidant mechanisms under saline conditions, BMC Plant Biology, 25(1): 101. https://doi.org/10.1186/s12870-024-06013-4 Wang Y., Cao Y., Liang X., Zhuang J., Wang X., Qin F., and Jiang C., 2022, A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize, Nature Communications, 13: 2124. https://doi.org/10.1038/s41467-022-29809-0 Wen B., Mei Z., Zeng C., and Liu S., 2017, metaX: A flexible and comprehensive software for metabolomics data processing, BMC Bioinformatics, 18: 183. https://doi.org/10.1186/s12859-017-1579-y Wu K., Liang X., Zhang X., Yang G., Wang H., Xia Y., Ishfaq S., Ji H., Qi Y., and Guo W., 2024, Metabolomics analysis reveals enhanced salt tolerance in maize through exogenous Valine-Threonine-Isoleucine-Aspartic acid application, Frontiers in Plant Science, 15: 1374142. https://doi.org/10.3389/fpls.2024.1374142 Xia J., and Wishart D.S, 2016, Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis, Current Protocols in Bioinformatics, 55(1): 14.10.1-14.10.91. https://doi.org/10.1002/cpbi.11 Yan Z., Li K., Li Y., Wang W., Leng B., Yao G., Zhang F., Mu C., and Liu X., 2023, The ZmbHLH32-ZmIAA9-ZmARF1 module regulates salt tolerance in maize, International Journal of Biological Macromolecules, 253(4): 126978. https://doi.org/10.1016/j.ijbiomac.2023.126978 Yue J., Wang L., Dou X., Wang Y., and Wang H., 2020, Comparative metabolomic profiling in the roots of salt-tolerant and salt-intolerant maize cultivars treated with NaCl stress, Biologia Plantarum, 64(3): 569-577. https://doi.org/10.32615/bp.2020.082 Zhang M., Cao Y., Wang Z., Shi J., Liang X., Song W., Chen Q., Lai J., and Jiang C., 2018, A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na⁺ exclusion and salt tolerance in maize, New Phytologist, 217(3): 1161-1176. https://doi.org/10.1111/nph.14882 Zhang M., Liang X., Wang L., Cao Y., Song W., Shi J., Lai J., and Jiang C., 2019, A HAK family Na⁺ transporter confers natural variation of salt tolerance in maize, Nature Plants, 5(12): 1297-1308. https://doi.org/10.1038/s41477-019-0565-y Zhang Z., Wang Y., and Li R., 2025, Genome-wide analysis of Zm4CL genes identifies Zm4CL8 regulating drought and salt tolerance in maize, Agronomy, 15(5): 1100. https://doi.org/10.3390/agronomy15051100 Zhao Z., Zheng H., Wang M., Guo Y., Wang Y., Zheng C., Tao Y., Sun X., Qian D., Cao G., Zhu M., Liang M., Wang M., Gong Y., Li B., Wang J., and Sun Y., 2023, Reshifting Na+ from shoots into long roots is associated with salt tolerance in two contrasting inbred maize (Zeamays L.) lines, Plants, 12(10): 1952. https://doi.org/10.3390/plants12101952 Zhou X., Li J., Wang Y., Liang X., Zhang M., Lu M., Guo Y., Qin F., and Jiang C., 2022, The classical SOS pathway confers natural variation of salt tolerance in maize, New Phytologist, 233(2): 763-778. https://doi.org/10.1111/nph.18278
RkJQdWJsaXNoZXIy MjQ4ODYzNA==