Maize Genomics and Genetics 2025, Vol.16, No.5, 276-283 http://cropscipublisher.com/index.php/mgg 282 Munnaf M., Wang Y., and Mouazen A., 2024, Robot driven combined site-specific maize seeding and N fertilization: an agro-economic investigation, Computers and Electronics in Agriculture, 219: 108761. https://doi.org/10.1016/j.compag.2024.108761 Noland R., Dowdy M., and Harris G., 2025, Maize row spacing and seeding rate informed by space-per-plant geometry, Agronomy, 15(2): 374. https://doi.org/10.3390/agronomy15020374 Otegui M., Riglos M., and Mercau J., 2021, Genetically modified maize hybrids and delayed sowing reduced negative drought effects across a rainfall gradient in temperate Argentina, Journal of Experimental Botany, 72(14): 5180-5188. https://doi.org/10.1093/jxb/erab139 Pelech E., Evers J., Pederson T., Drag D., Fu P., and Bernacchi C., 2022, Leaf, plant, to canopy: a mechanistic study on aboveground plasticity and plant density within a maize–soybean intercrop system for the Midwest, USA, Plant, Cell & Environment, 46(2): 405-421. https://doi.org/10.1111/pce.14487 Rao A., Chandran M., Bal S., Pramod V., Sandeep V., Manikandan N., Raju B., Prabhakar M., Islam A., Kumar S., and Singh V., 2022, Evaluating area-specific adaptation strategies in rainfed maize under future climates in India, The Science of the Total Environment, 836: 155511. https://doi.org/10.1016/j.scitotenv.2022.155511 Shen H., Xu F., Zhao R., Xing X., and Ma X., 2020, Optimization of sowing date, irrigation, and nitrogen management of summer maize using the DSSAT-CERES-Maize model in the Guanzhong Plain, China, Transactions of the ASABE, 63(4): 789-797. https://doi.org/10.13031/trans.13654 Shen H., Xu Y., Wang Y., Cheng G., Li S., Jiang K., and Ma X., 2023, Optimization of sowing date for spring maize in China's Loess Plateau based on presowing temperature and soil water content, Journal of the Science of Food and Agriculture, 103(6): 3157-3167. https://doi.org/10.1002/jsfa.12427 Srivastava R., Mequanint F., Chakraborty A., Panda R., and Halder D., 2022, Augmentation of maize yield by strategic adaptation to cope with climate change for a future period in Eastern India, Journal of Cleaner Production, 339: 130599. https://doi.org/10.1016/j.jclepro.2022.130599 Tar I., Vad A., and Csaba I., 2024, The effect of different sowing depth on the yield and yield-forming elements of maize, Acta Agraria Debreceniensis, 1: 173-176. https://doi.org/10.34101/actaagrar/1/12560 Tian B., Zhu J., Nie Y., Xu C., Meng Q., and Wang P., 2018, Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain, Journal of Agronomy and Crop Science, 205(1): 77-87. https://doi.org/10.1111/JAC.12299 Wang J., Dong X., Qiu R., Lou B., Tian L., Chen P., Zhang X., Liu X., and Sun H., 2023, Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain, Agricultural Water Management, 276: 108068. https://doi.org/10.1016/j.agwat.2022.108068 Wang W., Wu K., Zhang Y., Wang M., Zhang C., and Chen L., 2022, The development of an electric-driven control system for a high-speed precision planter based on the double closed-loop fuzzy PID algorithm, Agronomy, 12(4): 945. https://doi.org/10.3390/agronomy12040945 Wu W., Yue W., Bi J., Zhang L., Xu D., Peng C., Chen X., and Wang S., 2024, Influence of climatic variables on maize grain yield and its components by adjusting the sowing date, Frontiers in Plant Science, 15: 1411009. https://doi.org/10.3389/fpls.2024.1411009 Wu Y., Zhou G., Song Y., Ren S., Geng J., Zhao H., and Song X., 2023, A simulation study on optimization of sowing time of maize (Zea mays L.) for maximization of growth and yield in the present context of climate change under the North China Plain, Agronomy, 13(2): 385. https://doi.org/10.3390/agronomy13020385 Xiao D., Bai H., Liu D., Tang J., Wang B., Shen Y., Cao J., and Feng P., 2022, Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date, Mitigation and Adaptation Strategies for Global Change, 27: 21. https://doi.org/10.1007/s11027-022-09995-4 Xiao D., Liu D., Wang B., Feng P., and Waters C., 2020, Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain, Agricultural Systems, 181: 102805. https://doi.org/10.1016/j.agsy.2020.102805 Xie C., Yang L., He X., Cui T., Zhang D., Li H., Xiao T., and Wang H., 2024, Maize precision seeding scheme based on multi-sensor information fusion, Journal of Industrial Information Integration, 43: 100758. https://doi.org/10.1016/j.jii.2024.100758 Xie C., Zhang D., Yang L., Cui T., He X., and Du Z., 2021, Precision seeding parameter monitoring system based on laser sensor and wireless serial port communication, Computers and Electronics in Agriculture, 190: 106429. https://doi.org/10.1016/j.compag.2021.106429 Xu F., Wang B., He C., Liu D., Feng P., Yao N., Zhang R., Xu S., Xue J., Feng H., Yu Q., and He J., 2021, Optimizing sowing date and planting density can mitigate the impacts of future climate on maize yield: a case study in the Guanzhong Plain of China, Agronomy, 11(8): 1452. https://doi.org/10.3390/AGRONOMY11081452
RkJQdWJsaXNoZXIy MjQ4ODYzNA==