MGG_2025v16n5

Maize Genomics and Genetics 2025, Vol.16, No.5, 267-275 http://cropscipublisher.com/index.php/mgg 274 Patra K., Parihar C., Nayak H., Rana B., Sena D., Anand A., Reddy K., Chowdhury M., Pandey R., Kumar A., Singh L., Ghatala M., Sidhu H., and Jat M., 2023, Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize, Agricultural Water Management, 283: 108308. https://doi.org/10.1016/j.agwat.2023.108308 Qi D., and Hu T., 2022, Effects of nitrogen application rates and irrigation regimes on root growth and nitrogen-use efficiency of maize under alternate partial root-zone irrigation, Journal of Soil Science and Plant Nutrition, 22: 2793-2804. https://doi.org/10.1007/s42729-022-00846-4 Qi D., Hu T., and Liu T., 2020, Biomass accumulation and distribution, yield formation and water use efficiency responses of maize (Zea mays L.) to nitrogen supply methods under partial root-zone irrigation, Agricultural Water Management, 230: 105981. https://doi.org/10.1016/j.agwat.2019.105981 Qu Z., Chen Q., Yin S., Feng H., Liu Y., and Li C., 2024, Effects of drip irrigation coupled with controlled release potassium fertilizer on maize growth and soil properties, Agricultural Water Management, 301: 108948. https://doi.org/10.1016/j.agwat.2024.108948 Queiroz M., Oliveira C., Steiner F., Zuffo A., Zoz T., Vendruscolo E., Silva M., De Mello B., Cabral R., and Menis F., 2019, Drought stresses on seed germination and early growth of maize and sorghum, Journal of Agricultural Science, 11(2): 310. https://doi.org/10.5539/JAS.V11N2P310 Rahbari K., and Madandoust M., 2024, The effect of seed moisture content of hybrid maize at harvest time on seed germination traits and antioxidant enzymes activity under simulated environmental stresses with silicon foliar application, Silicon, 16: 3629-3639. https://doi.org/10.1007/s12633-024-02953-6 Sah R., Chakraborty M., Prasad K., Pandit M., Tudu V., Chakravarty M., Narayan S., Rana M., and Moharana D., 2020, Impact of water deficit stress in maize: phenology and yield components, Scientific Reports, 10: 2944. https://doi.org/10.1038/s41598-020-59689-7 Sandhu O., Gupta R., Thind H., Jat M., Sidhu H., and Yadvinder-Singh, 2019, Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India, Agricultural Water Management, 219: 19-26. https://doi.org/10.1016/J.AGWAT.2019.03.040 Wang D., Li G., Mo Y., Zhang D., Xu X., Wilkerson C., and Hoogenboom G., 2020, Evaluation of subsurface, mulched and non-mulched surface drip irrigation for maize production and economic benefits in northeast China, Irrigation Science, 39: 159-171. https://doi.org/10.1007/s00271-020-00692-1 Wang F., Xie R., Ming B., Wang K., Hou P., Chen J., Liu G., Zhang G., Xue J., and Li S., 2021, Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency, Agricultural Water Management, 254: 106938. https://doi.org/10.1016/J.AGWAT.2021.106938 Wang Y., Zhang Y., Zhang R., Li J., Zhang M., Zhou S., and Wang Z., 2018, Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain, The Science of the Total Environment, 618: 112-120. https://doi.org/10.1016/j.scitotenv.2017.10.284 Wu D., Xu X., Chen Y., Shao H., Sokolowski E., and Mi G., 2019, Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China, Agricultural Water Management, 213: 200-211. https://doi.org/10.1016/J.AGWAT.2018.10.018 Xue X., Du S., Jiao F., Xi M., Wang A., Xu H., Jiao Q., Zhang X., Jiang H., Chen J., and Wang M., 2021, The regulatory network behind maize seed germination: effects of temperature, water, phytohormones, and nutrients, The Crop Journal, 9(4): 718-724. https://doi.org/10.1016/J.CJ.2020.11.005 Yan F., Zhang F., Fan X., Fan J., Wang Y., Zou H., Wang H., and Li G., 2021, Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China, Agricultural Water Management, 243: 106440. https://doi.org/10.1016/j.agwat.2020.106440 Yang L., Fang X., Zhou J., Zhao J., Hou X., Yang Y., Zang H., and Zeng Z., 2024, Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: evidence from a four-year experiment, Agricultural Water Management, 294: 108726. https://doi.org/10.1016/j.agwat.2024.108726 Yang X., Wang G., Chen Y., Sui P., Pacenka S., Steenhuis T., and Siddique K., 2022, Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system—a 16-year field study in North China Plain, Field Crops Research, 275: 108364. https://doi.org/10.1016/j.fcr.2021.108364 Yu Z., Wang C., Zou H., Wang H., Li H., Sun H., and Yu D., 2022, The effects of aerated irrigation on soil respiration and the yield of the maize root zone, Sustainability, 14(8): 4378. https://doi.org/10.3390/su14084378 Żarski J., and Kuśmierek-Tomaszewska R., 2023, Effects of drip irrigation and top dressing nitrogen fertigation on maize grain yield in Central Poland, Agronomy, 13(2): 360. https://doi.org/10.3390/agronomy13020360

RkJQdWJsaXNoZXIy MjQ4ODYzNA==