Maize Genomics and Genetics 2025, Vol.16, No.5, 258-266 http://cropscipublisher.com/index.php/mgg 266 Wu X., Tong L., Kang S., Du T., Ding R., Li S., and Chen Y., 2023, Combination of suitable planting density and nitrogen rate for high yield maize and their source-sink relationship in Northwest China, Journal of the Science of Food and Agriculture, 103(11): 5300-5311. https://doi.org/10.1002/jsfa.12602 Xiao D., Liu D., Wang B., Feng P., and Waters C., 2020, Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain, Agricultural Systems, 181: 102805. https://doi.org/10.1016/j.agsy.2020.102805 Xu J., Cai H., Wang X., C., Lu Y., Ding Y., Wang X., Chen H., Wang Y., and Saddique Q., 2020, Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching, Agricultural Water Management, 228: 105904. https://doi.org/10.1016/j.agwat.2019.105904 Yan F., Zhang F., Fan X., Fan J., Wang Y., Zou H., Wang H., and Li G., 2021, Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China, Agricultural Water Management, 243: 106440. https://doi.org/10.1016/j.agwat.2020.106440 Yang X., Lu Y., Ding Y., Yin X., Raza S., and Tong Y., 2017, Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014), Field Crops Research, 206: 1-10. https://doi.org/10.1016/J.FCR.2017.02.016 Ye D., Chen J., Yu Z., Sun Y., Gao W., Wang X., Zhang R., Zaib-Un-Nisa, Su D., and Muneer M., 2023, Optimal plant density improves sweet maize fresh ear yield without compromising grain carbohydrate concentration, Agronomy, 13(11): 2830. https://doi.org/10.3390/agronomy13112830 Zhai L., Wang Z., Zhai Y., Zhang L., Zheng M., Yao H., LüL., Shen H., Zhang J., Yao Y., and Jia X., 2022, Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize, Soil and Tillage Research, 217: 105287. https://doi.org/10.1016/j.still.2021.105287 Zhang C., Gao J., Liu L., and Wu S., 2023, Simulating the effects of optimizing sowing date and variety shift on maize production at finer scale in Northeast China under future climate, Journal of the Science of Food and Agriculture, 104(6): 3637-3647. https://doi.org/10.1002/jsfa.13247 Zhang D., Sun Z., Feng L., Bai W., Yang N., Zhang Z., Du G., Chen F., Cai Q., Wang Q., Zhang Y., Wang R., Arshad A., Hao X., Sun M., Gao Z., and Zhang L., 2020, Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping, Field Crops Research, 257: 107926. https://doi.org/10.1016/j.fcr.2020.107926 Zheng Y., Yue Y., Li C., Wang Y., Zhang H., Ren H., Gong X., Jiang Y., and Qi H., 2023, Revolutionizing maize crop productivity: the winning combination of zigzag planting and deep nitrogen fertilization for maximum yield through root-shoot ratio management, Agronomy, 13(5): 1307. https://doi.org/10.3390/agronomy13051307 Chen G., Cao H., Liang J., Ma W., Guo L., Zhang S., Jiang R., Zhang H., Goulding K., and Zhang F., 2018, Factors affecting nitrogen use efficiency and grain yield of summer maize on smallholder farms in the North China Plain, Sustainability, 10(2): 363. https://doi.org/10.3390/su10020363
RkJQdWJsaXNoZXIy MjQ4ODYzNA==