Maize Genomics and Genetics 2025, Vol.16, No.5, 258-266 http://cropscipublisher.com/index.php/mgg 265 Lai Z., Fan J., Yang R., Xu X., Liu L., Li S., Zhang F., and Li Z., 2022, Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China, Agricultural Water Management, 263: 107453. https://doi.org/10.1016/j.agwat.2021.107453 Li G., Cheng Q., Li L., Lu D., and Lu W., 2021, N, P and K use efficiency and maize yield responses to fertilization modes and densities, Journal of Integrative Agriculture, 20: 78-86. https://doi.org/10.1016/s2095-3119(20)63214-2 Liu G., Liu W., Hou P., Ming B., Yang Y., Guo X., Xie R., Wang K., and Li S., 2021, Reducing maize yield gap by matching plant density and solar radiation, Journal of Integrative Agriculture, 20: 363-370. https://doi.org/10.1016/S2095-3119(20)63363-9 Luo N., Meng Q., Feng P., Qu Z., Yu Y., Liu D., Müller C., and Wang P., 2023, China can be self-sufficient in maize production by 2030 with optimal crop management, Nature Communications, 14: 2637. https://doi.org/10.1038/s41467-023-38355-2 Medina-Cuéllar S., Tirado-González D., Portillo-Vázquez M., Orozco-Cirilo S., López-Santiago M., Vargas-Canales J., Medina-Flores C., and Salem A., 2021, Optimal nitrogen fertilization to reach the maximum grain and stover yields of maize (Zea mays L.): tendency modeling, Agronomy, 11(7): 1354. https://doi.org/10.3390/AGRONOMY11071354 Meng C., Wang Z., Cai Y., Du F., Chen J., and Xiao C., 2022, Effects of planting density and nitrogen (N) application rate on light energy utilization and yield of maize, Sustainability, 14(24): 16707. https://doi.org/10.3390/su142416707 Ren H., Han K., Liu Y., Zhao Y., Zhang L., He Q., Li Z., Zhang J., Liu P., Wang H., Zhang J., and Zhao B., 2020, Improving smallholder farmers' maize yields and economic benefits under sustainable crop intensification in the North China Plain, The Science of the Total Environment, 763: 143035. https://doi.org/10.1016/j.scitotenv.2020.143035 Shao H., Wu X., Chi H., Zhu F., Liu J., Duan J., Shi W., Xu Y., and Mi G., 2024a, How does increasing planting density affect nitrogen use efficiency of maize: a global meta-analysis, Field Crops Research, 311: 109369. https://doi.org/10.1016/j.fcr.2024.109369 Shao H., Wu X., Duan J., Zhu F., Chi H., Liu J., Shi W., Xu Y., Wei Z., and Mi G., 2024b, How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: a global meta-analysis, Field Crops Research, 315: 109430. https://doi.org/10.1016/j.fcr.2024.109430 Shi D., Li Y., Zhang J., Liu P., Zhao B., and Dong S., 2016, Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize, Journal of Integrative Agriculture, 15: 2515-2528 https://doi.org/10.1016/S2095-3119(16)61355-2 Tian P., Liu J., Zhao Y., Huang Y., Lian Y., Wang Y., and Ye Y., 2022, Nitrogen rates and plant density interactions enhance radiation interception, yield, and nitrogen use efficiencies of maize, Frontiers in Plant Science, 13: 974714. https://doi.org/10.3389/fpls.2022.974714 Tian Z., Zhang M., Liu C., Xiang Y., Hu Y., Wang Y., Liu E., Wu P., Ren X., Jia Z., Siddique K., and Zhang P., 2024, Optimizing fertilization depth to promote yield performance and economic benefit in maize for hybrid seed production, European Journal of Agronomy, 159: 127245. https://doi.org/10.1016/j.eja.2024.127245 Wang H., Ren H., Han K., He Q., Zhang L., Zhao Y., Liu Y., Zhang J., Zhao B., Ren B., and Liu P., 2023a, Sustainable improvement strategies for summer maize yield, nitrogen use efficiency and greenhouse gas emission intensity in the North China Plain, European Journal of Agronomy, 143: 126712. https://doi.org/10.1016/j.eja.2022.126712 Wang H., Ren H., Han K., Zhang L., Zhao Y., Liu Y., He Q., Li G., Zhang J., Zhao B., Ren B., and Liu P., 2023b, Experimental assessment of the yield gap associated with maize production in the North China Plain, Field Crops Research, 295: 108897. https://doi.org/10.1016/j.fcr.2023.108897 Wang H., Ren H., Zhang L., Zhao Y., Liu Y., He Q., Li G., Han K., Zhang J., Zhao B., Ren B., and Liu P., 2023c, A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain, Agricultural Systems, 204: 103541. https://doi.org/10.1016/j.agsy.2022.103541 Waqas M., Wang X., Zafar S., Noor M., Hussain H., Nawaz M., and Farooq M., 2021, Thermal stresses in maize: effects and management strategies, Plants, 10(2): 293. https://doi.org/10.3390/plants10020293 Wei J., Chai Q., Yin W., Fan H., Guo Y., Hu F., Fan Z., and Wang Q., 2023, The grain yield and N uptake of maize response to increased plant density under reduced water and nitrogen supply, Journal of Integrative Agriculture, 23(1): 122-140. https://doi.org/10.1016/j.jia.2023.05.006 Wu L., Wang B., Quan H., Liu D., Feng H., Chen F., and Wu L., 2025, Designing virtual maize cultivars with optimal planting date and density can improve yield and water use efficiency under plastic mulching conditions, Field Crops Research, 322: 109723. https://doi.org/10.1016/j.fcr.2024.109723 Wu X., Li Z., Li W., Xue X., Yang L., Xu J., Yang B., Ding R., Jia Z., Zhang X., and Han Q., 2024, Reducing fertilization with high planting density increases maize yield stability and nitrogen use efficiency in semi-arid areas, European Journal of Agronomy, 159: 127223. https://doi.org/10.1016/j.eja.2024.127223
RkJQdWJsaXNoZXIy MjQ4ODYzNA==