Maize Genomics and Genetics 2025, Vol.16, No.5, 239-250 http://cropscipublisher.com/index.php/mgg 250 Varshney R., 2021, The Plant Genome special issue: advances in genomic selection and application of machine learning in genomic prediction for crop improvement, The Plant Genome, 14(3): e20178. https://doi.org/10.1002/tpg2.20178 Vergopolan N., Xiong S., Estes L., Wanders N., Chaney N., Wood E., Konar M., Caylor K., Beck H., Gatti N., Evans T., and Sheffield J., 2020, Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields, Hydrology and Earth System Sciences, 25: 1827-1847. https://doi.org/10.5194/hess-2020-364-supplement Vivek B., Krishna G., Vengadessan V., Babu R., Zaidi P., Kha L., Mandal S., Grudloyma P., Takalkar S., Krothapalli K., Singh I., Ocampo E., Xingming F., Burgueño J., Azrai M., Singh R., and Crossa J., 2017, Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize, The Plant Genome, 10(1): 70. https://doi.org/10.3835/plantgenome2016.07.0070 Wang J., Liu L., He K., Gebrewahid T., Gao S., Tian Q., Li Z., Song Y., Guo Y., Li Y., Cui Q., Zhang L., Wang J., Huang C., Li L., Guo T., and Li H., 2025, Accurate genomic prediction for grain yield and grain moisture content of maize hybrids using multi-environment data, Journal of Integrative Plant Biology, 67(5): 1379-1394. https://doi.org/10.1111/jipb.13857 Wang Y., Leng P., Shang G., Zhang X., and Li Z., 2023, Sun-induced chlorophyll fluorescence is superior to satellite vegetation indices for predicting summer maize yield under drought conditions, Computers and Electronics in Agriculture, 205: 107615. https://doi.org/10.1016/j.compag.2023.107615 Wang Y., Lv J., Sun H., Zuo H., Gao H., Qu Y., Su Z., Yang X., and Yin J., 2022, Dynamic agricultural drought risk assessment for maize using weather generator and APSIM crop models, Natural Hazards, 114: 3083-3100. https://doi.org/10.1007/s11069-022-05506-5 Wu C., Luo J., and Xiao Y., 2024, Multi-omics assists genomic prediction of maize yield with machine learning approaches, Molecular Breeding, 44: 1-17. https://doi.org/10.1007/s11032-024-01454-z Yuan Y., Cairns J., Babu R., Gowda M., Makumbi D., Magorokosho C., Zhang A., Liu Y., Wang N., Hao Z., Vicente S., Olsen M., Prasanna B., Lu Y., and Zhang X., 2019, Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize, Frontiers in Plant Science, 9: 1919. https://doi.org/10.3389/fpls.2018.01919 Zhang X., and Xu M.L., 2024, Adaptation of maize to various climatic conditions: genetic underpinnings, Bioscience Evidence, 14(3): 122-130. https://doi.org/10.5376/be.2024.14.0014 Zhang A., Chen S., Cui Z., Liu Y., Guan Y., Yang S., Qu J., Nie J., Dang D., Li C., Dong X., Fan J., Zhu Y., Zhang X., Crossa J., Cao H., Ruan Y., and Zheng H., 2022, Genomic prediction of drought tolerance during seedling stage in maize using low-cost molecular markers, Euphytica, 218: 154. https://doi.org/10.1007/s10681-022-03103-y
RkJQdWJsaXNoZXIy MjQ4ODYzNA==