Maize Genomics and Genetics 2025, Vol.16, No.5, 239-250 http://cropscipublisher.com/index.php/mgg 248 Amadu M., Beyene Y., Chaikam V., Tongoona P., Danquah E., Ifie B., Burgueño J., Prasanna B., and Gowda M., 2025, Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and agronomic traits under drought and optimum conditions in maize, BMC Plant Biology, 25: 135. https://doi.org/10.1186/s12870-025-06135-3 Amiri E., Irmak S., and Araji H., 2022, Assessment of CERES-Maize model in simulating maize growth, yield and soil water content under rainfed, limited and full irrigation, Agricultural Water Management, 259: 107271. https://doi.org/10.1016/j.agwat.2021.107271 Attia A., Govind A., Qureshi A., Feike T., Rizk M., Shabana M., and Kheir A., 2022, Coupling process-based models and machine learning algorithms for predicting yield and evapotranspiration of maize in arid environments, Water, 14(22): 3647. https://doi.org/10.3390/w14223647 Azrai M., Aqil M., Andayani N., Efendi R., Suarni, Suwardi, Jihad M., Zainuddin B., Salim, Bahtiar, Muliadi A., Yasin M., Hannan M., Rahman, and Syam A., 2024, Optimizing ensembles machine learning, genetic algorithms, and multivariate modeling for enhanced prediction of maize yield and stress tolerance index, Frontiers in Sustainable Food Systems, 8: 1334421. https://doi.org/10.3389/fsufs.2024.1334421 Bayer P., Petereit J., Danilevicz M., Anderson R., Batley J., and Edwards D., 2021, The application of pangenomics and machine learning in genomic selection in plants, The Plant Genome, 14(3): e20112. https://doi.org/10.1002/tpg2.20112 Bueechi E., Fischer M., Crocetti L., Trnka M., Grlj A., Zappa L., and Dorigo W., 2023, Crop yield anomaly forecasting in the Pannonian basin using gradient boosting and its performance in years of severe drought, Agricultural and Forest Meteorology, 340: 109596. https://doi.org/10.1016/j.agrformet.2023.109596 Chen I., 2024, Genome-wide association studies of disease resistance genes in maize, Genomics and Applied Biology, 15(1): 12-21. https://doi.org/10.5376/gab.2024.15.0003 Cheng M., Peñuelas J., Mccabe M., Atzberger C., Jiao X., Wu W., and Jin X., 2022, Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China, Agricultural and Forest Meteorology, 323: 109057. https://doi.org/10.1016/j.agrformet.2022.109057 Das R., Vinayan M., Seetharam K., Patel M., Kumar R., Singh S., Shahi J., Sarma A., Barua N., Babu R., and Zaidi P., 2021, Genetic gains with genomic versus phenotypic selection for drought and waterlogging tolerance in tropical maize (Zea mays L.), The Crop Journal, 9(6): 1438-1448. https://doi.org/10.1016/J.CJ.2021.03.012 Dias K., Gezan S., Guimarães C., Nazarian A., Da Costa E Silva L., Parentoni S., De Oliveira Guimarães P., De Oliveira Anoni C., Pádua J., De Oliveira Pinto M., Noda R., Ribeiro C., De Magalhães J., Garcia A., De Souza J., Guimarães L., and Pastina M., 2018, Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials, Heredity, 121: 24-37. https://doi.org/10.1038/s41437-018-0053-6 Guo Y., Xiao Y., Hao F., Zhang X., Chen J., De Beurs K., He Y., and Fu Y., 2023, Comparison of different machine learning algorithms for predicting maize grain yield using UAV-based hyperspectral images, International Journal of Applied Earth Observation and Geoinformation, 124: 103528. https://doi.org/10.1016/j.jag.2023.103528 Harsányi E., Bashir B., Arshad S., Ocwa A., Vad A., Alsalman A., Bácskai I., Rátonyi T., Hijazi O., Széles A., and Mohammed S., 2023, Data mining and machine learning algorithms for optimizing maize yield forecasting in Central Europe, Agronomy, 13(5): 1297. https://doi.org/10.3390/agronomy13051297 He K., Yu T., Gao S., Chen S., Li L., Zhang X., Huang C., Xu Y., Wang J., Prasanna B., Hearne S., Li X., and Li H., 2025, Leveraging automated machine learning for environmental data‐driven genetic analysis and genomic prediction in maize hybrids, Advanced Science, 12(17): 2412423. https://doi.org/10.1002/advs.202412423 Kang Y., Ozdogan M., Zhu X., Ye Z., Hain C., and Anderson M., 2020, Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest, Environmental Research Letters, 15: 064005. https://doi.org/10.1088/1748-9326/ab7df9 Kumar A., Singh V., Saran B., Al‐Ansari N., Singh V., Adhikari S., Joshi A., Singh N., and Vishwakarma D., 2022, Development of novel hybrid models for prediction of drought- and stress-tolerance indices in teosinte introgressed maize lines using artificial intelligence techniques, Sustainability, 14(4): 2287. https://doi.org/10.3390/su14042287 Lee D., Davenport F., Shukla S., Husak G., Funk C., Harrison L., McNally A., Rowland J., Budde M., and Verdin J., 2022, Maize yield forecasts for Sub-Saharan Africa using Earth Observation data and machine learning, Global Food Security, 33: 100643. https://doi.org/10.1016/j.gfs.2022.100643 Li J., Li G., Wang L., Li D., Li H., Gao C., Zhuang M., Zhuang J., Zhou H., Xu S., Hu Z., and Wang E., 2023, Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning, Field Crops Research, 302: 109102. https://doi.org/10.1016/j.fcr.2023.109102 Li J., Zhang D., Yang F., Zhang Q., Pan S., Zhao X., Zhang Q., Han Y., Yang J., Wang K., and Zhao C., 2024, TrG2P: a transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield, Plant Communications, 5(7): 100975. https://doi.org/10.1016/j.xplc.2024.100975 Liu S., and Qin F., 2021, Genetic dissection of maize drought tolerance for trait improvement, Molecular Breeding, 41: 8. https://doi.org/10.1007/s11032-020-01194-w
RkJQdWJsaXNoZXIy MjQ4ODYzNA==