MGG_2025v16n4

Maize Genomics and Genetics 2025, Vol.16, No.4, 229-238 http://cropscipublisher.com/index.php/mgg 237 Mishra R., Joshi R., and Zhao K., 2019, Base editing in crops: current advances, limitations and future implications, Plant Biotechnology Journal, 18: 20-31. https://doi.org/10.1111/pbi.13225 Molla K., Sretenovic S., Bansal K., and Qi Y., 2021, Precise plant genome editing using base editors and prime editors, Nature Plants, 7: 1166-1187. https://doi.org/10.1038/s41477-021-00991-1 Namata M., Xu J., Habyarimana E., Palakolanu S., Wang L., and Li J., 2025, Genome editing in maize and sorghum: a comprehensive review of CRISPR/Cas9 and emerging technologies, The Plant Genome, 18(2): e70038. https://doi.org/10.1002/tpg2.70038 Qiao D., Wang J., Lu M., Xin C., Chai Y., Jiang Y., Sun W., Cao Z., Guo S., Wang X., and Chen Q., 2022, Optimized prime editing efficiently generates heritable mutations in maize, Journal of Integrative Plant Biology, 65(4): 900-906. https://doi.org/10.1111/jipb.13428 Qiu F., Xue C., Liu J., Li B., Gao Q., Liang R., Chen K., and Gao C., 2025, An efficient mRNA delivery system for genome editing in plants, Plant Biotechnology Journal, 23: 1348-1358. https://doi.org/10.1111/pbi.14591 Rai M., Rhodes B., Jinga S., Kanchupati P., Ross E., Carlson S., and Moose S., 2025, Efficient mutagenesis and genotyping of maize inbreds using biolistics, multiplex CRISPR/Cas9 editing, and indel-selective PCR, Plant Methods, 21: 43. https://doi.org/10.1186/s13007-025-01365-w Shi L., Li X., Xue L., Zhang J., Huang B., Sun Z., Zhang Z., Dai X., Han S., Dong W., and Zhang X., 2023, Creation of herbicide‐resistance in allotetraploid peanut using CRISPR/Cas9‐meditated cytosine base‐editing, Plant Biotechnology Journal, 21: 1923-1925. https://doi.org/10.1111/pbi.14114 Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T., and Kondo A., 2017, Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion, Nature Biotechnology, 35: 441-443. https://doi.org/10.1038/nbt.3833 Svitashev S., Schwartz C., Lenderts B., Young J., and Cigan M., 2016, Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes, Nature Communications, 7: 13274. https://doi.org/10.1038/ncomms13274 Vandeputte W., Coussens G., Aesaert S., Haeghebaert J., Impens L., Karimi M., Debernardi J., and Pauwels L., 2024, Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency, The Plant Journal, 119(4): 2116-2132. https://doi.org/10.1111/tpj.16880 Wei T., Jiang L., You X., Ma P., Xi Z., and Wang N., 2023, Generation of herbicide-resistant soybean by base editing, Biology, 12(5): 741. https://doi.org/10.3390/biology12050741 Wu J., Chen C., Xian G., Liu D., Lin L., Yin S., Sun Q., Fang Y., Zhang H., and Wang Y., 2020, Engineering herbicide‐resistant oilseed rape by CRISPR/Cas9‐mediated cytosine base‐editing, Plant Biotechnology Journal, 18: 1857-1859. https://doi.org/10.1111/pbi.13368 Yamada H., Kato N., Ichikawa M., Mannen K., Kiba T., Osakabe Y., Sakakibara H., Matsui M., and Okamoto T., 2024, DNA-and selectable-marker-free genome-editing system using zygotes from recalcitrant maize inbred B73, Plant & Cell Physiology, 65(5): 729-736. https://doi.org/10.1093/pcp/pcae010 Yu X., Sun Y., Lin C., Wang P., Shen Z., and Zhao Y., 2023, Development of transgenic maize tolerant to both glyphosate and glufosinate, Agronomy, 13(1): 226. https://doi.org/10.3390/agronomy13010226 Zhang Q., Zhang Y., Lu M., Chai Y., Jiang Y., Zhou Y., Wang X., and Chen Q., 2019a, A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize, Plant Physiology, 181: 1441-1448. https://doi.org/10.1104/pp.19.00767 Zhang R., Chen S., Meng X., Chai Z., Wang D., Yuan Y., Chen K., Jiang L., Li J., and Gao C., 2020, Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing, Science China Life Sciences, 64: 1624-1633. https://doi.org/10.1007/s11427-020-1800-5 Zhang R., Liu J., Chai Z., Chen S., Bai Y., Zong Y., Chen K., Li J., Jiang L., and Gao C., 2019b, Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing, Nature Plants, 5: 480-485. https://doi.org/10.1038/s41477-019-0405-0 Zhang Y., Zhang Q., Liu Q., Zhao Y., Xu W., Hong C., Xu C., Qi X., Qi X., and Liu B., 2024, Fine mapping and functional validation of the maize nicosulfuron-resistance gene CYP81A9, Frontiers in Plant Science, 15: 1443413. https://doi.org/10.3389/fpls.2024.1443413 Zhong D., Pan H., Li K., Zhou Y., Zhao F., Ye L., Ruan S., Deng Q., Xu J., and Lu Y., 2023, Targeted A‐to‐T and A‐to‐C base replacement in maize using an optimized adenine base editor, Plant Biotechnology Journal, 22: 541-543. https://doi.org/10.1111/pbi.14256 Zhou J., and Liang K.W., 2024, Genetic engineering in maize breeding: enhancing global food security and sustainability, Molecular Plant Breeding, 15(5): 282-294. http://dx.doi.org/10.5376/mpb.2024.15.0027

RkJQdWJsaXNoZXIy MjQ4ODYzNA==