Maize Genomics and Genetics 2025, Vol.16, No.4, 229-238 http://cropscipublisher.com/index.php/mgg 236 References Andorf C., Beavis W., Hufford M., Smith S., Suza W., Wang K., Woodhouse M., Yu J., and Lübberstedt T., 2019, Technological advances in maize breeding: past, present and future, Theoretical and Applied Genetics, 132: 817-849. https://doi.org/10.1007/s00122-019-03306-3 Azameti M., and Dauda W., 2021, Base editing in plants: applications, challenges, and future prospects, Frontiers in Plant Science, 12: 664997. https://doi.org/10.3389/fpls.2021.664997 Bao J., Gao Y., Li Y., Wu S., Li J., Dong Z., and Wan X., 2022, Genetic analysis and fine mapping of ZmGHT1 conferring glufosinate herbicide tolerance in maize (Zea mays L.), International Journal of Molecular Sciences, 23(19): 11481. https://doi.org/10.3390/ijms231911481 Bharat S., Li S., Li J., Yan L., and Xia L., 2020, Base editing in plants: current status and challenges, Crop Journal, 8: 384-395. https://doi.org/10.1016/j.cj.2019.10.002 Char S., Neelakandan A., Nahampun H., Frame B., Main M., Spalding M., Becraft P., Meyers B., Walbot V., Wang K., and Yang B., 2016, An agrobacterium‐delivered CRISPR/Cas9 system for high‐frequency targeted mutagenesis in maize, Plant Biotechnology Journal, 15: 257-268. https://doi.org/10.1111/pbi.12611 Chen I., 2024, Genome-wide association studies of disease resistance genes in maize, Genomics and Applied Biology, 15(1): 12-21. https://doi.org/10.5376/gab.2024.15.0003 Dong H., Huang Y., and Wang K., 2021, The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing, Genes, 12(6): 912. https://doi.org/10.3390/genes12060912 Fierlej Y., Jacquier N., Guille L., Just J., Montes É., Richard C., Loue-Manifel J., Depège-Fargeix N., Gaillard A., Widiez T., and Rogowsky P., 2022, Evaluation of genome and base editing tools in maize protoplasts, Frontiers in Plant Science, 13: 1010030. https://doi.org/10.3389/fpls.2022.1010030 Hillary V., and Ceasar S., 2024, CRISPR/Cas system-mediated base editing in crops: recent developments and future prospects, Plant Cell Reports, 43(11): 271. https://doi.org/10.1007/s00299-024-03346-0 Hu J., Li S., Li Z., Li H., Song W., Zhao H., Lai J., Xia L., Li D., and Zhang Y., 2019, A barley stripe mosaic virus‐based guide RNA delivery system for targeted mutagenesis in wheat and maize, Molecular Plant Pathology, 20: 1463-1474. https://doi.org/10.1111/mpp.12849 Hussain A., Ding X., Alariqi M., Manghwar H., Hui F., Li Y., Cheng J., Wu C., Cao J., and Jin S., 2021, Herbicide resistance: another hot agronomic trait for plant genome editing, Plants, 10(4): 621. https://doi.org/10.3390/plants10040621 Jeong Y., Song B., and Bae S., 2020, Current status and challenges of DNA base editing tools, Molecular Therapy, 28(9): 1938-1952. https://doi.org/10.1016/j.ymthe.2020.07.021 Jiang C., Li Y., Wang R., Sun X., Zhang Y., and Zhang Q., 2024, Development and optimization of base editors and its application in crops, Biochemical and Biophysical Research Communications, 739: 150942. https://doi.org/10.1016/j.bbrc.2024.150942 Kaul T., Thangaraj A., Jain R., Bharti J., Kaul R., Verma R., Sony S., Motelb K., Yadav P., and Agrawal P., 2024, CRISPR/Cas9-mediated homology donor repair base editing system to confer herbicide resistance in maize (Zea mays L.), Plant Physiology and Biochemistry, 207: 108374. https://doi.org/10.1016/j.plaphy.2024.108374 Kelliher T., Starr D., Su X., Tang G., Chen Z., Carter J., Wittich P., Dong S., Green J., Burch E., McCuiston J., Gu W., Sun Y., Strebe T., Roberts J., Bate N., and Que Q., 2019, One-step genome editing of elite crop germplasm during haploid induction, Nature Biotechnology, 37: 287-292. https://doi.org/10.1038/s41587-019-0038-x Kuang Y., Yu H., Qi F., Zhou X., Li X., and Zhou H., 2024, Developing herbicide-resistant crops through genome editing technologies: a review, Crop Protection, 183: 106745. https://doi.org/10.1016/j.cropro.2024.106745 Li L., Fu X., Qi X., Xiao B., Liu C., Wu Q., Zhu J., and Xie C., 2025, Harnessing haploid‐inducer mediated genome editing for accelerated maize variety development, Plant Biotechnology Journal, 23: 1604-1614. https://doi.org/10.1111/pbi.14608 Li S., Li P., Li X., Wen N., Wang Y., Lu W., Lin M., and Lang Z., 2023, In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues, aBIOTECH, 4: 277-290. https://doi.org/10.1007/s42994-023-00114-8 Li Y., Zhu J., Wu H., Liu C., Huang C., Lan J., Zhao Y., and Xie C., 2020, Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize, Crop Journal, 8: 449-456. https://doi.org/10.1016/j.cj.2019.10.001 Liu F., Liu Y., Zou J., Zhang L., Zheng H., Luo Y., Wang X., and Wang L., 2023, Molecular characterization and efficacy evaluation of transgenic maize harboring cry2Ab-vip3A-cp4epsps for insect resistance and herbicide tolerance, Plants, 12(3): 612. https://doi.org/10.3390/plants12030612 Min T., Hwarari D., Li D., Movahedi A., and Yang L., 2022, CRISPR-based genome editing and its applications in woody plants, International Journal of Molecular Sciences, 23(17): 10175. https://doi.org/10.3390/ijms231710175
RkJQdWJsaXNoZXIy MjQ4ODYzNA==