MGG_2025v16n4

Maize Genomics and Genetics 2025, Vol.16, No.4, 219-228 http://cropscipublisher.com/index.php/mgg 228 Wahid F., Fahad S., Danish S., Adnan M., Yue Z., Saud S., Siddiqui M., BrtnickýM., Hammerschmiedt T., and Datta R., 2020, Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils, Agriculture, 10(8): 334. https://doi.org/10.3390/agriculture10080334 Wang B., Li Z., Ran Q., Li P., Peng Z., and Zhang J., 2018, ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants, Frontiers in Plant Science, 9: 709. https://doi.org/10.3389/fpls.2018.00709 Wang F., Cui P., Tian Y., Huang Y., Wang H., Liu F., and Chen Y., 2020a, Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation, Plant Biotechnology Journal, 18(12): 2406-2419. https://doi.org/10.1111/pbi.13414 Wang J., Pei L., Jin Z., Zhang K., and Zhang J., 2017, Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize, PLoS ONE, 12(4): e0176538. https://doi.org/10.1371/journal.pone.0176538 Wang S., Ruan Y., Du M., Sun W., Zhang Y., Wang Y., Guo J., Shao R., Yang Q., and Wang H., 2023a, Optimization of phosphate fertilizer application strategies to improve phosphorus availability and utilization in maize, Agronomy Journal, 116(2): 453-464. https://doi.org/10.1002/agj2.21513 Wang X., Wang H., Chen Y., Sun M., Wang Y., and Chen Y., 2020b, The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize, Plant Cell, 32: 3519-3534. https://doi.org/10.1105/tpc.20.00361 Wang Y., Wang Z., Du Q., Wang K., Zou C., and Li W., 2023b, The long-noncoding RNA PILNCR2 increases low phosphate tolerance in maize by interfering with miRNA399-guided cleavage of ZmPHT1s, Molecular Plant, 16(7): 1146-1159 https://doi.org/10.1016/j.molp.2023.05.009 Wu F., Yahaya B., Gong Y., He B., Gou J., He Y., Li J., Kang Y., Xu J., Wang Q., Feng X., Tang Q., Liu Y., and Lu Y., 2024, ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize, PLOS Genetics, 20(2): e1011135. https://doi.org/10.1371/journal.pgen.1011135 Xiao J., Xie X., Li C., Xing G., Cheng K., Li H., Liu N., Tan J., and Zheng W., 2021, Identification of SPX family genes in the maize genome and their expression under different phosphate regimes, Plant Physiology and Biochemistry, 168: 211-220. https://doi.org/10.1016/j.plaphy.2021.09.045 Xu Y., Bao H., Fei H., Zhou W., Li X., and Liu F., 2020, Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana, Biochemical and Biophysical Research Communications, 558: 196-201. https://doi.org/10.1016/j.bbrc.2020.09.039 Zhang X., and Xu M.L., 2024, Adaptation of maize to various climatic conditions: genetic underpinnings, Bioscience Evidence, 14(3): 122-130. https://doi.org/10.5376/be.2024.14.0014

RkJQdWJsaXNoZXIy MjQ4ODYzNA==