Maize Genomics and Genetics 2025, Vol.16, No.4, 219-228 http://cropscipublisher.com/index.php/mgg 227 Kumar K., Yadava P., Gupta M., Choudhary M., Jha A., Wani S., Dar Z., Kumar B., and Rakshit S., 2022, Narrowing down molecular targets for improving phosphorus-use efficiency in maize (Zea mays L.), Molecular Biology Reports, 49: 12091-12107. https://doi.org/10.1007/s11033-022-07679-5 Li J., Wu F., He Y., He B., Gong Y., Yahaya B., Xie Y., Xie W., Xu J., Wang Q., Feng X., Liu Y., and Lu Y., 2022, Maize transcription factor ZmARF4 confers phosphorus tolerance by promoting root morphological development, International Journal of Molecular Sciences, 23(4): 2361. https://doi.org/10.3390/ijms23042361 Li W., Liu B., Zhao M., Zhang K., He Q., Zhao X., Cheng W., Ding Z., Zhang K., and Li K., 2020, Isolation and characterization of a 295-bp strong promoter of maize high-affinity phosphate transporter gene ZmPht1; 5 in transgenic Nicotiana benthamiana and Zea mays, Planta, 251: 106. https://doi.org/10.1007/s00425-020-03400-7 Li Z., Gao Q., Liu Y., He C., Zhang X., and Zhang J., 2011, Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth, Planta, 233: 1129-1143. https://doi.org/10.1007/s00425-011-1368-1 Liu F., Xu Y., Han G., Wang W., Li X., and Cheng B., 2018, Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation, Plant and Cell Physiology, 59(8): 1683-1694. https://doi.org/10.1093/pcp/pcy094 Liu F., Xu Y., Jiang H., Jiang C., Du Y., Gong C., Wang W., Zhu S., Han G., and Cheng B., 2016, Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi, International Journal of Molecular Sciences, 17(6): 930. https://doi.org/10.3390/ijms17060930 Liu N., Zhao Y., Wu J., Wei Y., Ren R., Zang J., Zhang W., Zhang L., Shen Q., Zhang X., and Zhao X., 2020, Overexpression of ZmDWF4 improves major agronomic traits and enhances yield in maize, Molecular Breeding, 40: 71. https://doi.org/10.1007/s11032-020-01152-6 Liu Y., Qin L., Han L., Xiang Y., and Zhao D., 2015, Overexpression of maize SDD1 (ZmSDD1) improves drought resistance in Zea mays L. by reducing stomatal density, Plant Cell, Tissue and Organ Culture, 122: 147-159. https://doi.org/10.1007/s11240-015-0757-8 Luo L., Wei P., Peng S., Wang X., Chai R., Zhang C., Kadambot S., and Palta J., 2024, Rational phosphorus stewardship for sustainable maize production in China: a meta-analysis, European Journal of Agronomy, 153: 127072. https://doi.org/10.1016/j.eja.2023.127072 Mussarat M., Ali H., Muhammad D., Mian I., Khan S., Adnan M., Fahad S., Wahid F., Dawar K., Ali S., Zia A., Ahmad M., Khan S., Shah W., Romman M., Parvez R., Siddiqui M., Khan A., Wang D., and Jiang X., 2021, Comparing the phosphorus use efficiency of pre-treated (organically) rock phosphate with soluble P fertilizers in maize under calcareous soils, PeerJ, 9: e11452. https://doi.org/10.7717/peerj.11452 Nagy R., Vasconcelos M., Zhao S., McElver J., Bruce W., Amrhein N., Raghothama K., and Bucher M., 2006, Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.), Plant Biology, 8(2): 186-197. https://doi.org/10.1055/S-2005-873052 Nuccio M., Wu J., Mowers R., Zhou H., Meghji M., Primavesi L., Paul M., Chen X., Chen X., Gao Y., Haque E., Haque E., Basu S., and Lagrimini L., 2015, Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions, Nature Biotechnology, 33: 862-869. https://doi.org/10.1038/nbt.3277 Pavinato P., Rodrigues M., Soltangheisi A., Sartor L., and Withers P., 2017, Effects of cover crops and phosphorus sources on maize yield, phosphorus uptake, and phosphorus use efficiency, Agronomy Journal, 109: 1039-1047. https://doi.org/10.2134/AGRONJ2016.06.0323 Pei L., Wang J., Li K., Li Y., Li B., Gao F., and Yang A., 2012, Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize, PLoS ONE, 7(8): e43501. https://doi.org/10.1371/journal.pone.0043501 Rafiullah, Khan M., Muhammad D., Fahad S., Adnan M., Wahid F., Alamri S., Khan F., Dawar K., Irshad I., Danish S., Arif M., Amanullah, Saud S., Khan B., Mian I., Datta R., Zarei T., Shah A., Ramzan M., Zafar-Ul-Hye M., Mussarat M., and Siddiqui M., 2020, Phosphorus nutrient management through synchronization of application methods and rates in wheat and maize crops, Plants, 9(10): 1389. https://doi.org/10.3390/plants9101389 Song C., Wang W., Gan Y., Wang L., Chang X., Wang Y., and Yang W., 2021, Growth promotion ability of phosphate solubilizing bacteria from the soybean rhizosphere under maize-soybean intercropping systems, Journal of the Science of Food and Agriculture, 102(4): 1430-1442. https://doi.org/10.1002/jsfa.11477 Su S.Z., Wu F.K., Liu D., Wu L., and Gao S.B., 2013, Cloning and characterization of a phosphate transporter gene of Pht1 family in maize, Journal of Nuclear Agricultural Sciences, 27(7): 885-894. Takabatake R., Hata S., Taniguchi M., Kouchi H., Sugiyama T., and Izui K., 1999, Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopsis, Plant Molecular Biology, 40: 479-486. https://doi.org/10.1023/A:1006285009435
RkJQdWJsaXNoZXIy MjQ4ODYzNA==