Maize Genomics and Genetics 2025, Vol.16, No.4, 202-218 http://cropscipublisher.com/index.php/mgg 218 Tang B., Geng C.J., Zeng Q., Guo H.L., Li H., Cao Z.Y., Deng L.C., Peng M., Zhou H., and Chen Z.H., 2023, Kernel transcriptome analysis of maize inbred lines in response to high temperature stress, Acta Agriculturae Boreali-Sinica, 38(4): 11-19. https://doi.org/10.7668/hbnxb.20193984 Wang T., Feng J.L., and Zhang C., 2024, Research Progress on molecular mechanisms of heat stress affecting the growth and development of maize, Chinese Bulletin of Botany, 59(6): 963-977. https://doi.org/10.11983/CBB24049 Wang T., Wang F., Deng S., Wang K., Feng D., Xu F., Guo W., Yu J., Wu Y., Wuriyanghan H., Li S.T., Gu X., Le L., and Pu L., 2025, Single-cell transcriptomes reveal spatiotemporal heat stress response in maize roots, Nature Communications, 16: 177. https://doi.org/10.1038/s41467-024-55485-3 Yao Q.L., Chen F.B., Li W.B., and Fang P., 2019, Screening for physiological indexes of maize inbred lines under heat stress, Journal of Maize Sciences, 8: 84-88. https://doi.org/10.13597/j.cnki.maize.science.20190614 Zhang X., and Xu M.L., 2024, Adaptation of maize to various climatic conditions: genetic underpinnings, Bioscience Evidence, 14(3): 122-130. https://doi.org/10.5376/be.2024.14.0014
RkJQdWJsaXNoZXIy MjQ4ODYzNA==