Maize Genomics and Genetics 2025, Vol.16, No.4, 182-201 http://cropscipublisher.com/index.php/mgg 200 Du K., Zhao W., Lv Z., Liu L., Ali S., Chen B., Hu W., Zhou Z., and Wang Y., 2023, Auxin and abscisic acid play important roles in promoting glucose metabolism of reactivated young kernels of maize (Zea mays L.), Physiologia Plantarum, 175(5): e14019. https://doi.org/10.1111/ppl.14019 Du Y., Liu L., Peng Y., Li M., Li Y., Liu D., Li X., and Zhang Z., 2020, UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize, PLoS Genetics, 16(4): e1008764. https://doi.org/10.1371/journal.pgen.1008764 Feng F., Qi W., Lv Y., Yan S., Xu L., Yang J., Yuan Y., Chen Y., Zhao H., and Song R., 2018, OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism, The Plant Cell, 30(2): 375-396. https://doi.org/10.1105/tpc.17.00616 Galli M., Khakhar A., Lu Z., Chen Z., Sen S., Joshi T., Nemhauser J., Schmitz R.J., and Gallavotti A., 2018, The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family, Nature Communications, 9: 4526. https://doi.org/10.1038/s41467-018-06977-6 Gontarek B.C., Neelakandan A., Wu H., and Becraft P., 2016, NKD transcription factors are central regulators of maize endosperm development, Plant Cell, 28(11): 2916-2936. https://doi.org/10.1105/tpc.16.00609 Hendelman A., Zebell S., Rodriguez-Leal D., Dukler N., Robitaille G., Wu X., Kostyun J., Tal L., Wang P., Bartlett M., Eshed Y., Efroni I., amd Lippman Z.B., 2021, Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection, Cell, 184(6): 1724-1739. https://doi.org/10.1016/j.cell.2021.02.001 Hughes T.E., Sedelnikova O., Thomas M., and Langdale J., 2023, Mutations in NAKED-ENDOSPERM IDD genes reveal functional interactions with SCARECROW during leaf patterning in C4 grasses, PLOS Genetics, 19(1): e1010715. https://doi.org/10.1371/journal.pgen.1010715 Lu Z., Hofmeister B.T., Vollmers C., DuBois R., and Schmitz R.J., 2016, Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes, Nucleic Acids Research, 45: e41. https://doi.org/10.1093/nar/gkw1179 Wang B., Aguirre L., Rodríguez-Leal D., Hendelman A., Benoit M., and Lippman Z.B., 2021, Dissecting cis-regulatory control of quantitative trait variation in a plant stem-cell circuit, Nature Plants, 7(4): 419-427. https://doi.org/10.1038/s41477-021-00898-x Xie S., Tian R., Zhang J., Liu H., Li Y., Hu Y., Yu G., Huang Y., and Liu Y., 2023, Dek219 encodes DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize, Journal of Integrative Agriculture, 22(10): 2961-2980. https://doi.org/10.1016/j.jia.2023.02.024 Yang J., Ji C., and Wu Y., 2016, Divergent transactivation of maize storage protein zein genes by the transcription factors Opaque2 and OHPs, Genetics, 204(2): 581-591. https://doi.org/10.1534/genetics.116.192385 Yang T., Wang H., Guo L., Wu X., Xiao Q., Wang J., Wang Q., Ma G., Wang W., and Wu Y., 2022, ABA-induced phosphorylation of basic Leucine Zipper 29, ABSCISIC ACID INSENSITIVE 19 and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize, The Plant Cell, 34(5): 1933-1956,. https://doi.org/10.1093/plcell/koac044 Yu G., Shoaib N., Yang Y., Liu L., Mughal N., Mou Y., and Huang Y., 2023, Effect of phosphorylation sites mutations on the subcellular localization and activity of AGPase Bt2 subunit: implications for improved starch biosynthesis in maize, Agronomy, 13(8): 2119. https://doi.org/10.3390/agronomy13082119 Yuan L., Song X., Zhang L.S., Yu Y., Liang Z., Lei Y., Ruan J., Tan B., Liu J., and Li C., 2020, The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis, Nucleic Acids Research, 49(1): 98-113. https://doi.org/10.1093/nar/gkaa1129 Zhan J., Li G., Ryu C.H., Ma C., Zhang S., Lloyd A., Hunter B.G., Larkins B.A., Drews G.N., Wang X.F., and Yadegari R., 2018, Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm, Plant Cell, 30(10): 2425-2446. https://doi.org/10.1105/tpc.18.00392 Zhang X., Yang Y., Liang W., and Zhang D., 2018, The MADS-box gene family in maize: genome-wide characterization and expression analysis during reproductive development and abiotic stress responses, Frontiers in Plant Science, 9: 1281. https://doi.org/10.3389/fpls.2018.01281 Zhang Z., Lin L., Chen H., Ye W., Dong S., Zheng X., and Wang Y., 2022, ATAC-seq reveals the landscape of open chromatin and cis-regulatory elements in the Phytophthora sojae genome, Molecular Plant-Microbe Interactions, 35(4): 301-310. https://doi.org/10.1094/MPMI-11-21-0291-TA Zheng G., Wu J., Li J., Zhao Y., Zhou C., Ren R., Wei Y., Zhang X., and Zhao X., 2025, The chromatin accessibility landscape during early maize seed development, The Plant Journal, 121(6): e70073. https://doi.org/10.1111/tpj.70073 Zhou L., Bao Y., Wang J.E., Wang S.L., Zhong W.X., and Sun X.R., 2024a, Nucleotide polymorphism in Zea: patterns and influences on crop traits, Molecular Plant Breeding, 15(5): 220-232. https://doi.org/10.5376/mpb.2024.15.0022
RkJQdWJsaXNoZXIy MjQ4ODYzNA==