MGG_2025v16n4

Maize Genomics and Genetics 2025, Vol.16, No.4, 167-181 http://cropscipublisher.com/index.php/mgg 180 Salvo L., Cellucci G., Carlino M., and Salamone I., 2018, Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities, Applied Soil Ecology, 126: 113-120. https://doi.org/10.1016/J.APSOIL.2018.02.010 Solomon Y., Jiao X., Fekadu G., Aklilu A., Tsadiku A., and Jiang R., 2022, Maize production constraints at household levels: the case of Hawassa Zuria district in Sidama Region, Ethiopia, African Journal of Agricultural Research, 18(5): 295-307. https://doi.org/10.5897/ajar2022.15933 Spadola G., Giannelli G., Magagnoli S., Lanzoni A., Albertini M., Nicoli R., Ferrari R., Burgio G., Restivo F., and Degola F., 2022, Validation and ecological niche investigation of a new fungal intraspecific competitor as a biocontrol agent for the sustainable containment of aflatoxins on maize fields, Journal of Fungi, 8(5): 425. https://doi.org/10.3390/jof8050425 Saifulloh A., and Suntari R., 2022, Growth enhancement, uptake of N, P, K nutrients and production of maize in an entisol of Kalidawir, Tulungagung due to application of cow manure fertilizer and NPK fertilizer, Jurnal Tanah dan Sumberdaya Lahan, 9(1): 193-200. https://doi.org/10.21776/ub.jtsl.2022.009.1.21 Silva U., Oliveira C., Lana U., Gomes E., and Santos V., 2016, Growth promotion features of the maize microbiome: from an agriculture perspective, Plant-Microbe Interaction: An Approach to Sustainable Agriculture, 16: 345-374. https://doi.org/10.1007/978-981-10-2854-0_16 Tan Y., Wu D., Bol R., Wu W., and Meng F., 2019, Conservation farming practices in winter wheat-summer maize cropping reduce GHG emissions and maintain high yields, Agriculture, Ecosystems & Environment, 272: 266-275. https://doi.org/10.1016/J.AGEE.2018.12.001 Tang X., and Liu H., 2020, Climate suitability for summer maize on the North China Plain under current and future climate scenarios, International Journal of Climatology, 41: E2644-E2661. https://doi.org/10.1002/joc.6872 Tanumihardjo S., McCulley L., Roh R., Lopez-Ridaura S., Palacios-Rojas N., and Gunaratna N., 2020, Maize agro-food systems to ensure food and nutrition security in reference to the sustainable development goals, Global Food Security, 25: 100327. https://doi.org/10.1016/j.gfs.2019.100327 Tesfaye K., Kruseman G., Cairns J., Zaman-Allah M., Wegary D., Zaidi P., Boote K., Rahut D., and Erenstein O., 2017, Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments, Climate Risk Management, 19: 106-119. https://doi.org/10.1016/J.CRM.2017.10.001 Thomas T., 2015, US maize data reveals adaptation to heat and water stress, Food Industry eJournal, 2741261: 1485. https://doi.org/10.2139/SSRN.2741261 Thompson O., 2018, Socio-economic factors impacting on maize productivity in contrasting agro-ecological zones in Nigeria, Nigerian Journal of Technological Research, 13(2): v13i2.1. https://doi.org/10.4314/NJTR.V13I2.1 Tofa A., Kamara A., Babaji B., Akinseye F., and Bebeley J., 2021, Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria, Scientific Reports, 11: 8983. https://doi.org/10.1038/s41598-021-88277-6 Varshitha, V., Babu, R., Nirmalnath, P., Jamadar, A., and Roopashree M., 2019, Effect of early post emergent herbicides/herbicide mixtures on weed control and soil biological activity in maize L, International Journal of Current Microbiology and Applied Sciences, 8(3): 422-430. https://doi.org/10.20546/IJCMAS.2019.803.053 Wu D., Xu X., Chen Y., Shao H., Sokolowski E., and Mi G., 2019, Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China, Agricultural Water Management, 213: 200-211. https://doi.org/10.1016/J.AGWAT.2018.10.018 Wang X., Yan Y., Xu C., Wang X., Luo N., Wei D., Meng Q., and Wang P., 2021, Mitigating heat impacts in maize (Zea mays L.) during the reproductive stage through biochar soil amendment, Agriculture, Ecosystems & Environment, 311: 107321. https://doi.org/10.1016/J.AGEE.2021.107321 Wei Z., Bian D., Du X., Gao Z., Li C., Liu G., Yang Q., Jiang A., and Cui Y., 2023, An increase in solar radiation in the late growth period of maize alleviates the adverse effects of climate warming on the growth and development of maize, Agronomy, 13(5): 1284. https://doi.org/10.3390/agronomy13051284 Wu J.Y., and Li Q., 2024, The impact of genetic engineering on maize herbicide tolerance, Maize Genomics and Genetics, 15(2): 60-69. https://doi.org/10.5376/mgg.2024.15.0007 Yin X., Jabloun M., Olesen J., Öztürk I., Wang M., and Chen F., 2015, Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China, The Journal of Agricultural Science, 154: 1171-1189. https://doi.org/10.1017/S0021859616000150 Zhang N., Qu Y., Song Z., Chen Y., and Jiang J., 2022, Responses and sensitivities of maize phenology to climate change from 1971 to 2020 in Henan Province, China, PLoS ONE, 17(1): e0262289. https://doi.org/10.1371/journal.pone.0262289 Zhang Y., Wang S., Wang H., Wang R., Wang X., and Li J., 2018, Crop yield and soil properties of dryland winter wheat-spring maize rotation in response to 10-year fertilization and conservation tillage practices on the Loess Plateau, Field Crops Research, 225: 170-179. https://doi.org/10.1016/J.FCR.2018.07.003

RkJQdWJsaXNoZXIy MjQ4ODYzNA==