MGG_2025v16n4

Maize Genomics and Genetics 2025, Vol.16, No.4, 167-181 http://cropscipublisher.com/index.php/mgg 179 Mogeni E., 2019, Institutional and social economic factors affecting productivity of maize in Kenya: a case of transzoia and machakos counties, International Journal of Scientific and Research Publications, 9(2): 249-263. https://doi.org/10.29322/IJSRP.9.02.2019.P8632 Mohammed M., 2021, Empirical analysis of the factors that affecting maize production of farmers among smallholders: the case of Eastern Oromia, Ethiopia, Turkish Journal of Agriculture: Food Science and Technology, 9(1): 137-145. https://doi.org/10.24925/TURJAF.V9I1.137-145.3769 Mumba M., and Edriss A., 2018, Determinants and change in total factor productivity of smallholder maize production in Southern Zambia, Journal of Sustainable Development, 11(6): 170. https://doi.org/10.5539/JSD.V11N6P170 Mohammed G., Adam H., and Duniya K., 2019, Factors influencing improved maize farming technologies adoption in Yendi Municipality of Northern Region of Ghana, International Journal of Irrigation and Agricultural Development, 3(1): 58. https://doi.org/10.47762/2019.964x.58 Meng Q., Chen X., Lobell D., Cui Z., Zhang Y., Yang H., and Zhang F., 2016, Growing sensitivity of maize to water scarcity under climate change, Scientific Reports, 6: 19605. https://doi.org/10.1038/srep19605 Nepolean T., Kaul J., Mukri G., and Mittal S., 2018, Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize, Frontiers in Plant Science, 9: 361. https://doi.org/10.3389/fpls.2018.00361 Moreira H., Pereira S., Vega A., Castro P., and Marques A., 2019, Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity, Journal of Environmental Management, 257: 109982. https://doi.org/10.1016/j.jenvman.2019.109982 Matos C., Monteiro L., Gallo S., Costa M., and Silva A., 2019, Changes in soil microbial communities modulate interactions between maize and weeds, Plant and Soil, 440: 249-264. https://doi.org/10.1007/s11104-019-04066-1 Maitah M., Malec K., and Maitah K., 2021, Influence of precipitation and temperature on maize production in the Czech Republic from 2002 to 2019, Scientific Reports, 11: 10467. https://doi.org/10.1038/s41598-021-89962-2 Niranjana K., Yogendra K., and Mahadevan K., 2018, Physico-chemical characterisation and fertility rating of maize growing soils from hilly zone of Shivamogga district, Karnataka, Indian Journal of Agricultural Research, 52: 56-60. https://doi.org/10.18805/IJARE.A-4887 Onuwa G., Mailumo S., and Oyewole S., 2023, Socio-economic determinants of adoption of maize production technologies among smallholders, Agriekonomika, 12(1): 14621. https://doi.org/10.21107/agriekonomika.v12i1.14621 Oyewole S., Afolami C., Obayelu A., and Adeofun C., 2022, Effect of sustainable agricultural practices on production efficiency of maize farmers in Oyo and Ogun States Of Nigeria, The Journal of Developing Areas, 56: 121-136. https://doi.org/10.1353/jda.2022.0068 Prasanna B., Cairns J., Zaidi P., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B., Nair S., Rashid Z., Vinayan M., Issa A., Vicente F., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Prasanna B., Nair S., Babu R., Gowda M., Zhang X., Xu Y., Olsen M., Chaikam V., Cairns J., Zaman-Allah M., Beyene Y., Tarekegne, A., and Magorokosho C., 2020, Increasing genetic gains in maize in stress-prone environments of the tropics, Genomic Designing of Climate-Smart Cereal Crops, 3: 97-132. https://doi.org/10.1007/978-3-319-93381-8_3 Pramanick B., kumar M., Naik B., Kumar M., Singh S., Maitra S., Naik B., Rajput V., and Minkina T., 2022, Long-term conservation tillage and precision nutrient management in maize-wheat cropping system: effect on soil properties, crop production, and economics, Agronomy, 12(11): 2766. https://doi.org/10.3390/agronomy12112766 Prasanna R., Kanchan A., Ramakrishnan B., Ranjan K., Venkatachalam S., Hossain F., Shivay Y., Krishnan P., and Nain L., 2016, Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids, European Journal of Soil Biology, 75: 15-23. https://doi.org/10.1016/J.EJSOBI.2016.04.001 Pandit N., Mulder J., Hale S., Martinsen V., Schmidt H., and Cornelissen G., 2018, Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil, The Science of the Total Environment, 625: 1380-1389. https://doi.org/10.1016/j.scitotenv.2018.01.022 Qi Y., Zhang Q., Hu S., Wang R., Wang H., Zhang K., Zhao H., Ren S., Yang Y., Zhao F., and Chen F., 2022, Effects of high temperature and drought stresses on growth and yield of summer maize during grain filling in North China, Agriculture, 12(11): 1948. https://doi.org/10.3390/agriculture12111948 Rafique M., Ortaş I., Rizwan M., Chaudhary H., Gurmani A., and Munis M., 2019, Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils, Chemosphere, 238: 124710. https://doi.org/10.1016/j.chemosphere.2019.124710

RkJQdWJsaXNoZXIy MjQ4ODYzNA==