Maize Genomics and Genetics 2025, Vol.16, No.3, 139-148 http://cropscipublisher.com/index.php/mgg 148 Wu X., Feng H., Wu D., Yan S., Zhang P., Wang W., Zhang J., Ye J., Dai G., Fan Y., Li W., Song B., Geng Z., Yang W., Chen G., Qin F., Terzaghi W., Stitzer M., Li L., Xiong L., Yan J., Buckler E., Yang W., and Dai M., 2021, Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance, Genome Biology, 22: 185. https://doi.org/10.1186/s13059-021-02377-0 Yates L., Aandahl Z., Richards S., and Brook B., 2022, Cross validation for model selection: a review with examples from ecology, Ecological Monographs, 93(1): e1557. https://doi.org/10.1002/ecm.1557 Yuan Y., Cairns J., Babu R., Gowda M., Makumbi D., Magorokosho C., Zhang A., Liu Y., Wang N., Hao Z., Vicente S., Olsen M., Prasanna B., Lu Y., and Zhang X., 2019, Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize, Frontiers in Plant Science, 9: 1919. https://doi.org/10.3389/fpls.2018.01919 Zhang X., and Xu M.L., 2024, Adaptation of maize to various climatic conditions: genetic underpinnings, Bioscience Evidence, 14(3): 122-130. https://doi.org/10.5376/be.2024.14.0014 Zhang A., Chen S., Cui Z., Liu Y., Guan Y., Yang S., Qu J., Nie J., Dang D., Li C., Dong X., Fan J., Zhu Y., Zhang X., Crossa J., Cao H., Ruan Y., and Zheng H., 2022, Genomic prediction of drought tolerance during seedling stage in maize using low-cost molecular markers, Euphytica, 218: 154. https://doi.org/10.1007/s10681-022-03103-y Zhang N., Liu B., Fan Y., Chang J., Zhou Y., Wang Y., Zhang W., Zhang X., Shutu X., and Xue J., 2023, Molecular mechanisms of drought resistance using genome-wide association mapping in maize (Zeamays L.), BMC Plant Biology, 23: 468. https://doi.org/10.1186/s12870-023-04489-0
RkJQdWJsaXNoZXIy MjQ4ODYzNA==