Maize Genomics and Genetics 2025, Vol.16, No.3, 139-148 http://cropscipublisher.com/index.php/mgg 147 Oikonomidis A., Catal C., and Kassahun A., 2022, Hybrid deep learning-based models for crop yield prediction, Applied Artificial Intelligence, 36(1): 2031822. https://doi.org/10.1080/08839514.2022.2031823 Pant H., Joshi G., Rawat B., Goyal H., Joshi Y., and Bohra C., 2025, Comparative study of crop yield prediction using explainable AI and interpretable machine learning techniques, 2025 Fifth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 10958878: 1-7. https://doi.org/10.1109/ICAECT63952.2025.10958878 Paudel D., De Wit A., Boogaard H., Marcos D., Osinga S., and Athanasiadis I., 2023, Interpretability of deep learning models for crop yield forecasting, Computers and Electronics in Agriculture, 206: 107663. https://doi.org/10.1016/j.compag.2023.107663 Prasanna B., 2023, Breeding and deploying climate resilient maize varieties in the tropics, Indian Journal of Ecology, 6: 1895-1899. https://doi.org/10.55362/ije/2023/4153 Prasanna B., Cairns J., Zaidi P., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B., Nair S., Rashid Z., Vinayan M., Issa A., Vicente S., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Prodhan F., Zhang J., Yao F., Shi L., Sharma T., Zhang D., Cao D., Zheng M., Ahmed N., and Mohana H., 2021, Deep learning for monitoring agricultural drought in South Asia using remote sensing data, Remote Sensing, 13(9): 1715. https://doi.org/10.3390/rs13091715 Qiu J., 2024, An analysis of model evaluation with cross-validation: techniques, applications, and recent advances, Advances in Economics, Management and Political Sciences, 99: 69-72. https://doi.org/10.54254/2754-1169/99/2024ox0213 Rahmati O., Falah F., Dayal K., Deo R., Mohammadi F., Biggs T., Moghaddam D., Naghibi S., and Bui D., 2020, Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia, The Science of the Total Environment, 699: 134230. https://doi.org/10.1016/j.scitotenv.2019.134230 Razavi M., Nejadhashemi A., Majidi B., Razavi H., Kpodo J., Eeswaran R., Ciampitti I., and Prasad P., 2024, Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data, Artificial Intelligence in Agriculture, 14: 99-114. https://doi.org/10.1016/j.aiia.2024.11.005 Riley R., Archer L., Snell K., Ensor J., Dhiman P., Martin G., Bonnett L., and Collins G., 2024, Evaluation of clinical prediction models (part 2): how to undertake an external validation study, The BMJ, 384: e074820. https://doi.org/10.1136/bmj-2023-074820 Saleh A., Moniruzzaman M., Islam S., Ahmed K., Rahaman M., Hossain S., and Manik T., 2023, Integrating genomic selection and machine learning: a data-driven approach to enhance corn yield resilience under climate change, Journal of Environmental and Agricultural Studies, 4(2): 20-27. https://doi.org/10.32996/jeas.2023.4.2.6 Semagn K., Beyene Y., Babu R., Nair S., Gowda M., Das B., Tarekegne A., Mugo S., Mahuku G., Worku M., Warburton M., Olsen M., and Prasanna B., 2015, Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for Sub-Saharan Africa, Crop Science, 55: 1449-1459. https://doi.org/10.2135/CROPSCI2014.09.0646 Shawon S., Ema F., Mahi A., and Raihan M., 2023, Crop yield prediction: robust machine learning approaches for precision agriculture, 2023 26th International Conference on Computer and Information Technology (ICCIT), 10441634: 1-6. https://doi.org/10.1109/ICCIT60459.2023.10441634 Shikha M., Kanika A., Rao A., Mallikarjuna M., Gupta H., and Nepolean T., 2017, Genomic selection for drought tolerance using genome-wide SNPs in maize, Frontiers in Plant Science, 8: 550. https://doi.org/10.3389/fpls.2017.00550 Takada T., Nijman S., Denaxas S., Snell K., Uijl A., Nguyen T., Asselbergs F., and Debray T., 2021, Internal-external cross-validation helped to evaluate the generalizability of prediction models in large clustered datasets, Journal of Clinical Epidemiology, 137: 83-91. https://doi.org/10.1016/j.jclinepi.2021.03.025 Van Klompenburg T., Kassahun A., and Catal C., 2020, Crop yield prediction using machine learning: a systematic literature review, Computers and Electronics in Agriculture, 177: 105709. https://doi.org/10.1016/j.compag.2020.105709 Wang N., Liu B., Liang X., Zhou Y., Song J., Yang J., Yong H., Weng J., Zhang D., Li M., Nair S., Vicente F., Hao Z., Zhang X., and Li X., 2019, Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines, Molecular Breeding, 39: 113. https://doi.org/10.1007/s11032-019-1013-4 Worku M., Makumbi D., Beyene Y., Das B., Mugo S., Pixley K., Bänziger M., Owino F., Olsen M., Asea G., and Prasanna B., 2016, Grain yield performance and flowering synchrony of CIMMYT’s tropical maize (Zeamays L.) parental inbred lines and single crosses, Euphytica, 211: 395-409. https://doi.org/10.1007/s10681-016-1758-3 Wu C., Luo J., and Xiao Y., 2024, Multi-omics assists genomic prediction of maize yield with machine learning approaches, Molecular Breeding, 44: 1-17. https://doi.org/10.1007/s11032-024-01454-z
RkJQdWJsaXNoZXIy MjQ4ODYzNA==