MGG_2025v16n3

Maize Genomics and Genetics 2025, Vol.16, No.3, 129-138 http://cropscipublisher.com/index.php/mgg 137 Djalović I., Kundu S., Bahuguna R., Pareek A., Raza A., Singla-Pareek S., Prasad P., and Varshney R., 2023, Maize and heat stress: physiological, genetic, and molecular insights, The Plant Genome, 17(1): e20378. https://doi.org/10.1002/tpg2.20378 Driedonks N., Rieu I., and Vriezen W., 2016, Breeding for plant heat tolerance at vegetative and reproductive stages, Plant Reproduction, 29: 67-79. https://doi.org/10.1007/s00497-016-0275-9 Dupuis I., and Dumas C., 1990, Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues, Plant Physiology, 94(2): 665-670. https://doi.org/10.1104/PP.94.2.665 El-Sappah A., Rather S., Wani S., Elrys A., Bilal M., Huang Q., Dar Z., Elashtokhy M., Soaud N., Koul M., Mir R., Yan K., Li J., El-Tarabily K., and Abbas M., 2022, Heat stress-mediated constraints in maize (Zeamays) production: challenges and solutions, Frontiers in Plant Science, 13: 879366. https://doi.org/10.3389/fpls.2022.879366 Giorno F., Wolters-Arts M., Mariani C., and Rieu I., 2013, Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development, Plants, 2: 489-506. https://doi.org/10.3390/plants2030489 Guo J., Wang Z., Li J., Qu L., Chen Y., Li G., and Lu D., 2024, Salicylic acid promotes endosperm development and heat-tolerance of waxy maize (Zeamays L. var. ceratina Kulesh) under heat stress, Plant Stress, 14: 100684. https://doi.org/10.1016/j.stress.2024.100684 Hill C., and Li C., 2022, Genetic improvement of heat stress tolerance in cereal crops, Agronomy, 12(5): 1205. https://doi.org/10.3390/agronomy12051205 Howarth C.J., and Ougham H.J., 1993, Gene expression under temperature stress, New Phytologist, 125(1): 1-26. https://doi.org/10.1111/j.1469-8137.1993.tb03862.x Inghelandt D., Frey F., Ries D., and Stich B., 2019, QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize, Scientific Reports, 9: 14418. https://doi.org/10.1038/s41598-019-50853-2 Jagtap A., Yadav I., Vikal Y., Praba U., Kaur N., Gill A., and Johal G., 2023, Transcriptional dynamics of maize leaves, pollens and ovules to gain insights into heat stress-related responses, Frontiers in Plant Science, 14: 1117136. https://doi.org/10.3389/fpls.2023.1117136 Liang Z., Myers Z., Petrella D., Engelhorn J., Hartwig T., and Springer N., 2022, Mapping responsive genomic elements to heat stress in a maize diversity panel, Genome Biology, 23: 234. https://doi.org/10.1186/s13059-022-02807-7 Lizaso J., Ruíz-Ramos M., Rodríguez L., Gabaldón-Leal C., Oliveira J., Lorite I., Sanchez D., García E., and Rodríguez A., 2018, Impact of high temperatures in maize: phenology and yield components, Field Crops Research, 216: 129-140. https://doi.org/10.1016/J.FCR.2017.11.013 Lv X., Yao Q., Mao F., Liu M., Wang Y., Wang X., Gao Y., Wang Y., Liao S., Wang P., and Huang S., 2024, Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the biggest opportunities, Journal of Experimental Botany, 75(14): 4219-4243. https://doi.org/10.1093/jxb/erad506 Mitchell J., and Petolino J., 1988, Heat stress effects on isolated reproductive organs of maize, Journal of Plant Physiology, 133: 625-628. https://doi.org/10.1016/S0176-1617(88)80019-1 Raviteja D., Swamy N., Ranjeetha R., and Jadhav A., 2024, Heat stress in maize: understanding the physiological and biochemical impacts, Journal of Advances in Biology & Biotechnology, 27(8): 81-90. https://doi.org/10.9734/jabb/2024/v27i81123 Seetharam K., Kuchanur P., Koirala K., Tripathi M., Patil A., Sudarsanam V., Das R., Chaurasia R., Pandey K., Vemuri H., Vinayan M., Nair S., Babu R., and Zaidi P., 2021, Genomic regions associated with heat stress tolerance in tropical maize (Zeamays L.), Scientific Reports, 11: 13730. https://doi.org/10.1038/s41598-021-93061-7 Tiwari Y., and Yadav S., 2019, High Temperature stress tolerance in maize (Zea mays L.): physiological and molecular mechanisms, Journal of Plant Biology, 62: 93-102. https://doi.org/10.1007/s12374-018-0350-x Wang H., Sun J., Ren H., Zhao B., Zhang J., Ren B., and Liu P., 2024, Heat‐stress‐induced fertility loss in summer maize (Zeamays L.): quantitative analysis of contributions from developmental and physiological damage to pollen, Journal of Agronomy and Crop Science, 210(3): e12710. https://doi.org/10.1111/jac.12710 Wang Y., Lv X., Sheng D., Hou X., Mandal S., Liu X., Zhang P., Shen S., Wang P., Jagadish S.V.K., and Huang S., 2023, Heat‐dependent postpollination limitations on maize pollen tube growth and kernel sterility, Plant, Cell & Environment, 46(12): 3822-3838. https://doi.org/10.1111/pce.14702 Waqas M., Wang X., Zafar S., Noor M., Hussain H., Nawaz M., and Farooq M., 2021, Thermal stresses in maize: effects and management strategies, Plants, 10(2): 293. https://doi.org/10.3390/plants10020293 Xi Y., Ling Q., Zhou Y., Liu X., and Qian Y., 2022, ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis, Frontiers in Plant Science, 13: 986628. https://doi.org/10.3389/fpls.2022.986628

RkJQdWJsaXNoZXIy MjQ4ODYzNA==