MGG_2025v16n3

Maize Genomics and Genetics 2025, Vol.16, No.3, 119-128 http://cropscipublisher.com/index.php/mgg 128 Jarquín D., De Leon N., Romay C., Bohn M., Buckler E.S., Ciampitti I., Edwards J., Ertl D., Flint-Garcia S., Gore M.A., Graham C., Hirsch C.N., Holland J.B., Hooker D., Kaeppler S.M., Knoll J., Lee E.C., Lawrence-Dill C.J., Lynch J.P., and Moose S.P., 2021, Utility of climatic information via combining ability models to improve genomic prediction for yield within the genomes to fields maize project, Frontiers in Genetics, 11: 592769. https://doi.org/10.3389/fgene.2020.592769 Kamweru I., Anani B.Y., Beyene Y., Makumbi D., Adetimirin V.O., and Prasanna B.M., 2022, Genomic analysis of resistance to fall armyworm (Spodoptera frugiperda) in CIMMYT maize lines, Genes, 13(2): 251. https://doi.org/10.3390/genes13020251 Li Z., Li Z., Ji Y., Wang C., Wang S., Shi Y., Le J., and Zhang M., 2024, The ZmHSF20-ZmHSF4-ZmCesA2 module regulates heat stress tolerance in maize, bioRxiv, 581499: 1-46. https://doi.org/10.1101/2024.02.21.581499 Longmei N., Gill G., Zaidi P., Kumar R., Nair S., Hindu V., Vinayan M., and Vikal Y., 2021, Genome wide association mapping for heat tolerance in sub-tropical maize, BMC Genomics, 22: 154. https://doi.org/10.1186/s12864-021-07463-y Miedaner T., Boeven A., Gaikpa D., Kistner M., and Grote C., 2020, Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize, International Journal of Molecular Sciences, 21(24): 9717. https://doi.org/10.3390/ijms21249717 Mukaro R., Kamutando C., Magorokosho C., Mutari B., Zaidi P., Kutywayo D., and Sibiya J., 2023, Genetic potential of tropically adapted exotic maize (Zea mays L.) heat-tolerant donor lines in sub-tropical breeding programs, Agronomy, 13(8): 2050. https://doi.org/10.3390/agronomy13082050 Naveed M., Ahsan M., Akram H., Aslam M., and Ahmed N., 2016, Genetic effects conferring heat tolerance in a cross of tolerant×susceptible maize (Zeamays L.) genotypes, Frontiers in Plant Science, 7: 729. https://doi.org/10.3389/fpls.2016.00729 Nelimor C., Badu‐Apraku B., Tetteh A., and N’guetta A., 2019, Assessment of genetic diversity for drought, heat and combined drought and heat stress tolerance in early maturing maize landraces, Plants, 8(11): 518. https://doi.org/10.3390/plants8110518 Park T., Wang S., Kang J., Kang M., Chung J., and So Y., 2024, Digital Image analysis of low-temperature responses in sweet corn hybrid seedlings, Agriculture, 14(3): 360. https://doi.org/10.3390/agriculture14030360 Prasanna B., Cairns J., Zaidi P., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B., Nair S., Rashid Z., Vinayan M., Issa A., Vicente S., Dhliwayo, T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Qureeshi M., Hussain F., Noorka I., and Rauf S., 2020, Screening of spring wheat (Triticum aestivum L.) germplasm against drought and heat stress, Cereal Research Communications, 49: 365-374. https://doi.org/10.1007/s42976-020-00110-4 Saluci J., Vivas M., De Almeida R., Vasconcelos L., Valadares F., De Andrade Junior M., Santos J., Mussi‐Dias V., Da Silveira S., and Amaral Júnior A., 2024, Evaluation and selection of sources of resistance in popcorn to southern corn leaf blight, Plant Pathology, 73(8): 2147-2156. https://doi.org/10.1111/ppa.13957 Seetharam K., Kuchanur P., Koirala K., Tripathi M., Patil A., Sudarsanam V., Das R., Chaurasia R., Pandey K., Vemuri H., Vinayan M., Nair S., Babu R., and Zaidi P., 2021, Genomic regions associated with heat stress tolerance in tropical maize (Zeamays L.), Scientific Reports, 11: 13730. https://doi.org/10.1038/s41598-021-93061-7 Tyagi S., Kumar A., Gautam T., Pandey R., Rustgi S., and Mir R., 2021, Development and use of miRNA-derived SSR markers for the study of genetic diversity, population structure, and characterization of genotypes for breeding heat tolerant wheat varieties, PLoS ONE, 16(2): e0231063. https://doi.org/10.1371/journal.pone.0231063 Xue M., Han X., Zhang L., and Chen S., 2024, Heat-resistant inbred lines coordinate the heat response gene expression remarkably in maize (Zea mays L.), Genes, 15(3): 289. https://doi.org/10.3390/genes15030289 Yang Q., Guo Z., Zhang J., Wang Y., Xu Y., and Nian H., 2024, Genome-wide association study reveals marker-trait associations for heat-stress tolerance in sweet corn, Agronomy, 14(9): 2171. https://doi.org/10.3390/agronomy14092171

RkJQdWJsaXNoZXIy MjQ4ODYzNA==