Maize Genomics and Genetics 2025, Vol.16, No.3, 108-118 http://cropscipublisher.com/index.php/mgg 118 Liu J., Zhang L., Huang L., Yang T., Ma J., Yu T., Zhu W., Zhang Z., and Tang J., 2022, Uncovering the gene regulatory network of maize hybrid ZD309 under heat stress by transcriptomic and metabolomic analysis, Plants, 11(5): 677. https://doi.org/10.3390/plants11050677 Longmei N., Gill G., Zaidi P., Kumar R., Nair S., Hindu V., Vinayan M., and Vikal Y., 2021, Genome wide association mapping for heat tolerance in sub-tropical maize, BMC Genomics, 22: 154. https://doi.org/10.1186/s12864-021-07463-y Rossi S., and Huang B., 2024, Research advances in molecular mechanisms regulating heat tolerance in cool‐season turfgrasses, Crop Science, 65(1): e21339. https://doi.org/10.1002/csc2.21339 Saini N., Nikalje G., Zargar S., and Suprasanna P., 2021, Molecular insights into sensing, regulation and improving of heat tolerance in plants, Plant Cell Reports, 41: 799-813. https://doi.org/10.1007/s00299-021-02793-3 Seetharam K., Kuchanur P., Koirala K., Tripathi M., Patil A., Sudarsanam V., Das R., Chaurasia R., Pandey K., Vemuri H., Vinayan M., Nair S., Babu R., and Zaidi P., 2021, Genomic regions associated with heat stress tolerance in tropical maize (Zeamays L.), Scientific Reports, 11: 13730. https://doi.org/10.1038/s41598-021-93061-7 Singh I., Debnath S., Gautam A., and Yadava P., 2020, Characterization of contrasting genotypes reveals general physiological and molecular mechanisms of heat-stress adaptation in maize (Zeamays L.), Physiology and Molecular Biology of Plants, 26: 921-929. https://doi.org/10.1007/s12298-020-00801-6 Wu D., Zhu J., Shu Z., Wang W., Yan C., Xu S., Wu D., Wang C., Dong Z., and Sun G., 2020, Physiological and transcriptional response to heat stress in heat-resistant and heat-sensitive maize (Zeamays L.) inbred lines at seedling stage, Protoplasma, 257: 1615-1637. https://doi.org/10.1007/s00709-020-01538-5. Wu N., Yao Y., Xiang D., Du H., Geng Z., Yang W., Li X., Xie T., Dong F., and Xiong L., 2022, A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAINgenes in rice, The New Phytologist, 234(4): 1315-1331. https://doi.org/10.1111/nph.18068 Xi Y., Ling Q., Zhou Y., Liu X., and Qian Y., 2022, ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis, Frontiers in Plant Science, 13: 986628. https://doi.org/10.3389/fpls.2022.986628 Xie C., Yang L., Jia G., Yan K., Zhang S., Yang G., Wu C., Gai Y., Zheng C., and Huang J., 2022, Maize HEAT UP-REGULATED GENE 1 plays vital roles in heat stress tolerance, Journal of Experimental Botany, 73(18): 6417-6433. https://doi.org/10.1093/jxb/erac262 Xue M., Han X., Zhang L., and Chen S., 2024, Heat-resistant inbred lines coordinate the heat response gene expression remarkably in maize (Zea mays L.), Genes, 15(3): 289. https://doi.org/10.3390/genes15030289 Yang H., Zhao Y.L., Chen N., Liu Y.P., Yang S.Y., Du H.W., Wang W., Wu J.Y., Tai F.J., Chen F., and Hu X.L., 2021, A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize, Journal of Experimental Botany, 72(2): 283-301. https://doi.org/10.1093/jxb/eraa431 Zhang H., Meng X., Liu R., Li R., Wang Y., Ma Z., Liu Z., Duan S., Li G., and Guo X., 2024, Heat shock factor ZmHsf17 positively regulates phosphatidic acid phosphohydrolase ZmPAH1and enhances maize thermotolerance, Journal of Experimental Botany, 76(2): 493-512. https://doi.org/10.1093/jxb/erae406
RkJQdWJsaXNoZXIy MjQ4ODYzNA==