Maize Genomics and Genetics 2025, Vol.16, No.2, 89-97 http://cropscipublisher.com/index.php/mgg 97 Prasanna B.M., Cairns J.E., Zaidi P.H., Beyene,Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B.S., Nair S.K., Rashid Z., Vinayan M.T., Issa A.B., Vicente F.S., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Rajpal V.R., Singh A., Kathpalia R., Thakur R.K., Khan M.K., Pandey A., Hamurcu M., and Raina S.N., 2023, The prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation, Frontiers in Plant Science, 14: 1127239. https://doi.org/10.3389/fpls.2023.1127239 Ribaut J.M., and Ragot M., 2007, Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives, Journal of Experimental Botany, 58(2): 351-360. https://doi.org/10.1093/JXB/ERL214 Romay M.C., Millard M.J., Glaubitz J.C., Peiffer J.A., Swarts K.L., Casstevens T.M., Elshire R.J., Acharya C.B., Mitchell S.E., Flint-Garcia S.A., McMullen M.D., Holland J.B., Buckler E.S., and Gardner C.A., 2013, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biology, 14(6): R55. https://doi.org/10.1186/gb-2013-14-6-r55 Singh S., Raghuraman M., Keerthi M.C., Das A., Kar S.K., Das B., Devi H.L., Sunani S.K., Sahoo M.R., Casini R., Elansary H.O., and Acharya G.C., 2023, Occurrence, distribution, damage potential, and farmers’ perception on fall armyworm, Spodoptera frugiperda (J.E. Smith): evidence from the Eastern Himalayan Region, Sustainability, 15(7): 5681. https://doi.org/10.3390/su15075681 Șuteu D., Băcilă I., Has V., Haș I., and Miclăuș M., 2013, Romanian maize (Zea mays) inbred lines as a source of genetic diversity in SE Europe, and their potential in future breeding efforts, PLoS ONE, 8(12): e85501. https://doi.org/10.1371/journal.pone.0085501 Tian H., Yang Y., Yi H., Xu L., He H., Fan Y., Wang L., Ge J., Liu Y., Wang F., and Zhao J., 2020, New resources for genetic studies in maize (Zeamays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application, The Plant Journal, 105(4): 1113-1122. https://doi.org/10.1111/tpj.15089 Wan J., Huang C., Li C.Y., Zhou H.X., Ren Y.L., Li Z.Y., Xing L.S., Zhang B., Qiao X., Liu B., Liu C.H., Xi Y., Liu W.X., Wang W.K., Qian W.Q., McKirdy S., and Wan F., 2021, Biology, invasion and management of the agricultural invader: fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Journal of Integrative Agriculture, 20(3): 646-663. https://doi.org/10.1016/S2095-3119(20)63367-6 Wu J.Y., and Li Q., 2024, The impact of genetic engineering on maize herbicide tolerance, Maize Genomics and Genetics, 15(2): 60-69. doi: 10.5376/mgg.2024.15.0007 Xu C., Ren Y., Jian Y., Guo Z., Zhang Y., Xie C., Fu J., Wang H., Wang G., Xu Y., Li P., and Zou C., 2017, Development of a maize 55 K SNP array with improved genome coverage for molecular breeding, Molecular Breeding, 37(3): 20. https://doi.org/10.1007/s11032-017-0622-z Yu K., Wang H., Liu X., Xu C., Li Z., Xu X., Liu J., Wang Z., and Xu Y., 2020, Large-scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources, Frontiers in Plant Science, 11: 660. https://doi.org/10.3389/fpls.2020.00660
RkJQdWJsaXNoZXIy MjQ4ODYzNA==