Maize Genomics and Genetics 2025, Vol.16, No.2, 80-88 http://cropscipublisher.com/index.php/mgg 88 Kelliher T., Starr D., Richbourg L., Chintamanani S., Delzer B., Nuccio M., Green J., Chen Z., McCuiston J., Wang W., Liebler T., Bullock P., and Martin B., 2017, MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction, Nature, 542(7639): 105-109. https://doi.org/10.1038/nature20827 Liu C., Li X., Meng D., Zhong Y., Chen C., Dong X., Xu X., Chen B., Li W., Li L., Tian X., Zhao H., Song W., Luo H., Zhang Q., Lai J., Jin W., Yan J., and Chen S., 2017, A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize, Molecular Plant, 10(3): 520-522. https://doi.org/10.1016/j.molp.2017.01.011 Liu C., Zhong Y., Qi X., Chen M., Liu Z., Chen C., Tian X., Li J., Jiao Y., Wang D., Wang Y., Li M., Xin M., Liu W., Jin W., and Chen S., 2019, Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat, Plant Biotechnology Journal, 18(2): 316-318. https://doi.org/10.1111/pbi.13218 Meng D., Liu C., Chen S., and Jin W., 2021, Haploid induction and its application in maize breeding, Molecular Breeding, 41: 20. https://doi.org/10.1007/s11032-021-01204-5 Meng D., Luo H., Dong Z., Huang W., Liu F., Li F., Chen S., Yu H., and Jin W., 2022, Overexpression of modified CENH3 in maize Stock6-derived inducer lines can effectively improve maternal haploid induction rates, Frontiers in Plant Science, 13: 892055. https://doi.org/10.3389/fpls.2022.892055 Prasanna B., Cairns J., Zaidi P., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B., Nair S., Rashid Z., Vinayan M., Issa A., Vicente F., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134(6): 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Prasanna B., Nair S., Babu R., Gowda M., Zhang X., Xu Y., Olsen M., Chaikam V., Cairns J., Zaman-Allah M., Beyene Y., Tarekegne A., and Magorokosho C., 2020, Increasing genetic gains in maize in stress-prone environments of the tropics, Genomic Designing of Climate-Smart Cereal Crops, 3: 97-132. https://doi.org/10.1007/978-3-319-93381-8_3 Prigge V., Xu X., Li L., Babu R., Chen S., Atlin G., and Melchinger A., 2012, New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize, Genetics, 190(2): 781-793. https://doi.org/10.1534/genetics.111.133066 Rasheed A., Jie H., Ali B., He P., Zhao L., Ma Y., Xing H., Qari S., Hassan M., Hamid M., and Jie Y., 2023, Breeding drought-tolerant maize (Zeamays) using molecular breeding tools: recent advancements and future prospective, Agronomy, 13(6): 1459. https://doi.org/10.3390/agronomy13061459 Sserumaga J., Oikeh S., Mugo S., Asea G., Otim M., Beyene Y., Abalo G., and Kikafunda J., 2015, Genotype by environment interactions and agronomic performance of doubled haploids testcross maize (Zeamays L.) hybrids, Euphytica, 207(2): 353-365. https://doi.org/10.1007/s10681-015-1549-2 Trentin H., Batîru G., Frei U., Dutta S., and Lübberstedt T., 2022, Investigating the effect of the interaction of maize inducer and donor backgrounds on haploid induction rates, Plants, 11(2): 1527. https://doi.org/10.3390/plants11121527 Wang B., Zhu L., Zhao B., Zhao Y., Xie Y., Zheng Z., Li Y., Sun J., and Wang H., 2019, Development of a haploid-inducer mediated genome editing system for accelerating maize breeding, Molecular Plant, 12(4): 597-602. https://doi.org/10.1016/j.molp.2019.03.006 Wang Y., Tang Q., Pu L., Zhang H., and Li X., 2022, CRISPR-Cas technology opens a new era for the creation of novel maize germplasms, Frontiers in Plant Science, 13: 1049803. https://doi.org/10.3389/fpls.2022.1049803 Zhong Y., Liu C., Qi X., Jiao Y., Wang D., Wang Y., Liu Z., Chen C., Chen B., Tian X., Li J., Chen M., Dong X., Xu X., Li L., Li W., Liu W., Jin W., Lai J., and Chen S., 2019, Mutation of ZmDMP enhances haploid induction in maize, Nature Plants, 5(6): 575-580. https://doi.org/10.1038/s41477-019-0443-7 Zhou J., and Liang K.W., 2024, Genetic engineering in maize breeding: enhancing global food security and sustainability, Molecular Plant Breeding, 15(5): 282-294. https://doi.org/10.5376/mpb.2024.15.0027 Zhou L., and Jiang L., 2024, Genomics-assisted breeding in maize: techniques and outcomes, Maize Genomics and Genetics, 15(3): 111-122. https://doi.org/10.5376/mgg.2024.15.0012
RkJQdWJsaXNoZXIy MjQ4ODYzNA==