MGG_2025v16n2

Maize Genomics and Genetics 2025, Vol.16, No.2, 60-69 http://cropscipublisher.com/index.php/mgg 69 Rice B.R., and Lipka A.E., 2021, Diversifying maize genomic selection models, Molecular Breeding, 41(5): 33. https://doi.org/10.1007/s11032-021-01221-4 Romay M.C., Millard M.J., Glaubitz J.C., Peiffer J.A., Swarts K.L., Casstevens T.M., Elshire R.J., Acharya C.B., Mitchell S.E., Flint-Garcia S.A., McMullen M.D., Holland J.B., Buckler E.S., and Gardner C.A., 2013, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biology, 14: R55. https://doi.org/10.1186/gb-2013-14-6-r55 Ruanjaichon V., Khammona K., Thunnom B., Suriharn K., Kerdsri C., Aesomnuk W., Yongsuwan A., Chaomueang N., Thammapichai P., Arikit S., Wanchana S., and Toojinda T., 2021, Identification of gene associated with sweetness in corn (Zea mays L.) by genome-wide association study (GWAS) and development of a functional SNP marker for predicting sweet corn, Plants, 10(6): 1239. https://doi.org/10.3390/plants10061239 Ruanjaichon V., Yin K., Thunnom B., Khammona K., Suriharn K., Simla S., Kerdsri C., Aesomnuk W., Yongsuwan A., Chaomueang N., Oo N.N., Unartngam J., Arikit S., Wanchana S., and Toojinda T., 2022, Genome-wide association study (GWAS) reveals an snp associated with waxy trait and development of a functional marker for predicting waxy maize (Zeamays L. var. ceratina), Agronomy, 12(10): 2289. https://doi.org/10.3390/agronomy12102289 Saha I., Rathinavel K., Manoharan B., Adhimoolam K., Sampathrajan V., Rajasekaran R., Muthurajan R., and Natesan S., 2022, The resurrection of sweet corn inbred SC11-2 using marker aided breeding for β-carotene, 6: 1004450. https://doi.org/10.3389/fsufs.2022.1004450 Stagnati L., Soffritti G., Martino M., Lanubile A., Desiderio F., Ravasio A., Marocco A., Rossi G., and Busconi M., 2021, Morphological and genetic characterization of local maize accessions from emilia romagna region, Italy, Sustainability, 14(1): 91. https://doi.org/10.3390/su14010091 Vidal R., Silva N., and Ogliari J., 2020, Old tools as new support for on farm conservation of different types of maize, Scientia Agricola, 77(1): e20180091. https://doi.org/10.1590/1678-992X-2018-0091 Wang Y.H., Tang Q.L., Pu L., Zhang H.W., and Li X.H., 2022, CRISPR-Cas technology opens a new era for the creation of novel maize germplasms, Frontiers in Plant Science, 13: 1049803. https://doi.org/10.3389/fpls.2022.1049803 Wattoo F.M., Rana R.M., Fiaz S., Zafar S.A., Noor M.A., Hassan H.M., Bhatti M.H., Rehman S.U., Anis G.B., and Amir R.M., 2018, Identification of drought tolerant maize genotypes and seedling based morpho-physiological selection indices for crop improvement, Sains Malaysiana, 47(2): 295-302. Yang P.Z., Zhong G.X., Xie H., Chen S.F., Su L.S., Liu H.L., and Zhang X., 2011, Research on background and utilization of germplasm resources in maize, Agricultural Science and Technology, 12(10): 1464-1467.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==