MGG_2025v16n2

Maize Genomics and Genetics 2025, Vol.16, No.2, 60-69 http://cropscipublisher.com/index.php/mgg 68 Crossa J., Taba S., Eberhart S.A., Bretting P., and Vencovsky R., 1994, Practical considerations for maintaining germplasm in maize, Theoretical and Applied Genetics, 89(1): 89-95. https://doi.org/10.1007/BF00226988 Dang D.D., Guan Y., Zheng H.J., Zhang X.C., Zhang A., Wang H., Ruan Y.Y., and Qin L., 2023, Genome-wide association study and genomic prediction on plant architecture traits in sweet corn and waxy corn, Plants, 12(2): 303. https://doi.org/10.3390/plants12020303 Dermail A., Fuengtee A., Lertrat K., Suwarno W.B., Lübberstedt T., and Suriharn K., 2021, Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand, Agronomy, 12(1): 87. https://doi.org/10.3390/agronomy12010087 Dong L., Qi X.T., Zhu J.J., Liu C.L., Zhang X., Cheng B.J., Mao L., and Xie C.X., 2019, Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing, Plant Biotechnology Journal, 17(10): 1853-1855. https://doi.org/10.1111/pbi.13144 Guzzon F., Gianella M., Juarez J.A.V., Cano C.S., and Costich D.E., 2021, Seed longevity of maize conserved under germplasm bank conditions for up to 60 years, Annals of Botany, 127(6): 775-785. https://doi.org/10.1093/aob/mcab009 Hallauer A., and Carena M.J., 2014, Adaptation of tropical maize germplasm to temperate environments, Euphytica, 196: 1-11. https://doi.org/10.1007/s10681-013-1017-9 He J.F., Zhao X.Q., Laroche A., Lu Z.X., Liu H.K., and Li Z.Q., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 584. https://doi.org/10.3389/fpls.2014.00484 He T.H., and Li C.D., 2020, Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change, The Crop Journal, 8(5): 688-700. https://doi.org/10.1016/j.cj.2020.04.005 Hou J.F., Zhang J.M., Bao F., Zhang P., Han H.L., Tan H.P., Chen B., and Zhao F.C., 2024, The contribution of exotic varieties to maize genetic improvement, Molecular Plant Breeding, 15(4): 198-208. https://doi.org/10.1016/S0305-750X(01)00013-4 Jompuk C., Jitlaka C., Jompuk P., and Stamp P., 2020, Combining three grain mutants for improved‐quality sweet corn, Agricultural and Environmental Letters, 5(1): e20010. https://doi.org/10.1002/ael2.20010 Kumawat G., Kumawat C.K., Chandra K., Pandey S., Chand S., Mishra U.N., Lenka D., and Sharma R., 2020, Insights into marker assisted selection and its applications in plant breeding, Plant Breeding-Current and Future Views, 95004: 1-22. https://doi.org/10.5772/intechopen.95004 Kurtz B., Gardner C.A.C., Millard M.J., Nickson T., and Smith S.C., 2016, Global access to maize germplasm provided by the us national plant germplasm system and by US plant breeders, Crop Science, 56(3): 931-941. https://doi.org/10.2135/CROPSCI2015.07.0439 Langyan S., Bhardwaj R., Kumari J., Jacob S.R., Bisht I.S., Pandravada S.R., Singh A., Singh P.B., Dar Z.A., Kumar A., and Rana J.C., 2022, Nutritional diversity in native germplasm of maize collected from three different fragile ecosystems of India, Frontiers in Nutrition, 9: 812599. https://doi.org/10.3389/fnut.2022.812599 Nass L., and Paterniani E., 2000, Pre-breeding: a link between genetic resources and maize breeding, Scientia Agricola, 57(3): 581-587. https://doi.org/10.1590/S0103-90162000000300035 Ndou V., Gasura E., Chivenge P., and Derera J., 2021, Grain yield gains and associated traits in tropical × temperate maize germplasm under high and low plant density, Euphytica, 217: 186. https://doi.org/10.1007/s10681-021-02918-5 Nuss E., and Tanumihardjo S., 2010, Maize: a paramount staple crop in the context of global nutrition, Comprehensive Reviews in Food Science and Food safety, 9(4): 417-436. https://doi.org/10.1111/J.1541-4337.2010.00117.X Ortiz R., Taba S., Tovar V.H.C., Mezzalama M., Xu Y., Yan J., and Crouch J., 2010, Conserving and enhancing maize genetic resources as global public goods- a perspective from CIMMYT, Crop Science, 50(1): 13-28. https://doi.org/10.2135/CROPSCI2009.06.0297 Palacios-Rojas N., McCulley L., Kaeppler M., Titcomb T.J., Gunaratna N.S., Lopez-Ridaura S., and Tanumihardjo S.A., 2020, Mining maize diversity and improving its nutritional aspects within agro-food systems, Comprehensive Reviews in Food Science and Food Safety, 19(4): 1809-1834. https://doi.org/10.1111/1541-4337.12552 Prasanna B.M., Cairns J.E., Zaidi P.H., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B.S., Nair S.K., Rashid Z., Vinayan M.T., Issa A.B., Vicente F.S., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134(6): 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Revilla P., Anibas C.M., and Tracy W.F., 2021, Sweet corn research around the world 2015–2020, Agronomy, 11(3): 534. https://doi.org/10.3390/AGRONOMY11030534

RkJQdWJsaXNoZXIy MjQ4ODYzNA==