MGG_2025v16n1

Maize Genomics and Genetics 2025, Vol.16, No.1, 45-59 http://cropscipublisher.com/index.php/mgg 58 Nguyen G., and Norton S., 2020, Genebank phenomics: a strategic approach to enhance value and utilization of crop germplasm, Plants, 9(7): 817. https://doi.org/10.3390/plants9070817 Patto M., Šatović Z., Pêgo S., and Fevereiro P., 2004, Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers, Euphytica, 137: 63-72. https://doi.org/10.1023/B:EUPH.0000040503.48448.97 Prasanna B., 2010, Phenotypic and molecular diversity of maize landraces: characterization and utilization, Indian Journal of Genetics and Plant Breeding, 70: 315-327. Rahman M., Hoque A., Hossain A., and Bari A., 2018, Variability and traits association analyses in maize (Zea mays L.) genotypes, The Agriculturists, 15: 101-114. https://doi.org/10.3329/AGRIC.V15I2.35473 Ribaut J., and Ragot M., 2006, Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives, Journal of Experimental Botany, 58(2): 351-360. https://doi.org/10.1093/JXB/ERL214 Rice B., and Lipka A., 2021, Diversifying maize genomic selection models, Molecular Breeding, 41: 33. https://doi.org/10.1007/s11032-021-01221-4 Rogers A., Bian Y., Krakowsky M., Peters D., Turnbull C., Nelson P., and Holland J., 2022, Genomic prediction for the germplasm enhancement of maize project, The Plant Genome, 15(4): e20267. https://doi.org/10.1002/tpg2.20267 Romay M., Millard M., Glaubitz J., Peiffer J., Swarts K., Casstevens T., Elshire R., Acharya C., Mitchell S., Flint-Garcia S., McMullen M., Holland J., Buckler E., and Gardner C., 2013, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biology, 14: R55. https://doi.org/10.1186/gb-2013-14-6-r55 Ruanjaichon V., Yin K., Thunnom B., Khammona K., Suriharn K., Simla S., Kerdsri C., Aesomnuk W., Yongsuwan A., Chaomueang N., Oo N., Unartngam J., Arikit S., Wanchana S., and Toojinda T., 2022, Genome-wide association study (GWAS) reveals an snp associated with waxy trait and development of a functional marker for predicting waxy maize (Zeamays L. var. ceratina), Agronomy, 12(10): 2289. https://doi.org/10.3390/agronomy12102289 Shikha K., Shahi J., Vinayan M., Zaidi P., Singh A., and Sinha B., 2021, Genome-wide association mapping in maize: status and prospects, 3 Biotech, 11: 244. https://doi.org/10.1007/s13205-021-02799-4 Shu G., Cao G., Li N., Wang A., Wei F., Li T., Yi L., Xu Y., and Wang Y., 2021, Genetic variation and population structure in China summer maize germplasm, Scientific Reports, 11: 8012. https://doi.org/10.1038/s41598-021-84732-6 Singamsetti A., Shahi J., Zaidi P., Seetharam K., Vinayan M., Kumar M., Singla S., Shikha K., and Madankar K., 2021, Genotype×environment interaction and selection of maize (Zeamays L.) hybrids across moisture regimes, Field Crops Research, 270: 108224. https://doi.org/10.1016/j.fcr.2021.108224 Tucker S., Dohleman F., Grapov D., Flagel L., Yang S., Wegener K., Kosola K., Swarup S., Rapp R., Bedair M., Halls S., Glenn K., Hall M., Allen E., and Rice E., 2019, Evaluating maize phenotypic variance, heritability, and yield relationships at multiple biological scales across agronomically relevant environments, Plant, Cell & Environment, 43(4): 880-902. https://doi.org/10.1111/pce.13681 Wallace J., Bradbury P., Zhang N., Gibon Y., Stitt M., and Buckler E., 2014, Association mapping across numerous traits reveals patterns of functional variation in maize, PLoS Genetics, 10(12): e1004845. https://doi.org/10.1371/journal.pgen.1004845 Wallace J., Zhang X., Beyene Y., Semagn K., Olsen M., Prasanna B., and Buckler E., 2016, Genome‐wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well‐watered conditions in Sub‐Saharan Africa, Crop Science, 56: 2365-2378. https://doi.org/10.2135/CROPSCI2015.10.0632 Wen Y., Wu X., Wang S., Han L., Shen B., Wang Y., and Zhang J., 2023, Identification of QTN-by-environment interactions for yield related traits in maize under multiple abiotic stresses, Frontiers in Plant Science, 14: 1050313. https://doi.org/10.3389/fpls.2023.1050313 Westhues C., Mahone G., Da Silva S., Thorwarth P., Schmidt M., Richter J., Simianer H., and Beissinger T., 2021, Prediction of maize phenotypic traits with genomic and environmental predictors using gradient boosting frameworks, Frontiers in Plant Science, 12: 699589. https://doi.org/10.3389/fpls.2021.699589 Xia X., Reif J., Melchinger A., Frisch M., Hoisington D., Beck D., Pixley K., and Warburton M., 2005, Genetic diversity among CIMMYT Maize inbred lines investigated with SSR Markers: II. subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with Elite U.S. and European maize, Crop Science, 45(6): 2573-2582. https://doi.org/10.2135/CROPSCI2005.0246 Xiao Y., Liu H., Wu L., Warburton M., and Yan J., 2017, Genome-wide association studies in maize: praise and stargaze, Molecular Plant, 10(3): 359-374. https://doi.org/10.1016/j.molp.2016.12.008 Yang J., Jiang H., Yeh, C., Yu, J., Jeddeloh, J., Nettleton D., and Schnable, P., 2015, Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel, The Plant Journal, 84(3): 587-596. https://doi.org/10.1111/tpj.13029

RkJQdWJsaXNoZXIy MjQ4ODYzNA==