Maize Genomics and Genetics 2025, Vol.16, No.1, 45-59 http://cropscipublisher.com/index.php/mgg 57 Bozovic D., Popović D., Popović V., Živanović T., Ljubičić N., Ćosić M., Spahić A., Simić D., and Filipović V., 2022, Economical productivity of maize genotypes under different herbicides application in two contrasting climatic conditions, Sustainability, 14(9): 5629. https://doi.org/10.3390/su14095629 Dang D., Guan Y., Zheng H., Zhang X., Zhang A., Wang H., Ruan Y., and Qin L., 2023, Genome-wide association study and genomic prediction on plant architecture traits in sweet corn and waxy corn, Plants, 12(2): 303. https://doi.org/10.3390/plants12020303 Ding D.Y., 2024, The role and challenges of genome-wide association studies in revealing crop genetic diversity, Bioscience Method, 14(1): 8-19. https://doi.org/10.5376/bm.2024.15.0002 Flint-Garcia S., Bodnar A., and Scott M., 2009, Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte, Theoretical and Applied Genetics, 119: 1129-1142. https://doi.org/10.1007/s00122-009-1115-1 Flint-Garcia S., Thuillet A., Yu J., Pressoir G., Romero S., Mitchell S., Doebley J., Kresovich S., Goodman M., and Buckler E., 2005, Maize association population: a high-resolution platform for quantitative trait locus dissection, The Plant Journal, 44(6): 1054-1064. https://doi.org/10.1111/J.1365-313X.2005.02591.X Hansey C., Vaillancourt B., Sekhon R., De León N., Kaeppler S., Buell C., and Moustafa A., 2012, Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing, PLoS ONE, 7(3): e33071. https://doi.org/10.1371/journal.pone.0033071 He C., Fu J., Zhang J., Li Y., Zheng J., Zhang H., Yang X., Wang J., and Wang G., 2017, A gene-oriented haplotype comparison reveals recently selected genomic regions in temperate and tropical maize germplasm, PLoS ONE, 12(1): e0169806. https://doi.org/10.1371/journal.pone.0169806 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 Hufford M., Seetharam A., Woodhouse M., Chougule K., Ou S., Liu J., Ricci W., Guo T., Olson A., Qiu Y., Coletta R., Tittes S., Hudson A., Marand A., Wei S., Lu Z., Wang B., Tello-Ruiz M., Piri R., Wang N., Kim D., Zeng Y., O’Connor C., Li X., Gilbert A., Baggs E., Krasileva K., Portwood J., Cannon E., Andorf C., Manchanda N., Snodgrass S., Hufnagel D., Jiang Q., Pedersen S., Syring M., Kudrna D., Llaca V., Fengler K., Schmitz R., Ross-Ibarra J., Yu J., Gent J., Hirsch C., Ware D., and Dawe R., 2021, De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes, Science, 373: 655-662. https://doi.org/10.1126/science.abg5289 Jin M., Liu H., He C., Fu J., Xiao Y., Wang Y., Xie W., Wang G., and Yan J., 2015, Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation, Scientific Reports, 6: 18936. https://doi.org/10.1038/srep18936 Jin M., Liu H., Liu X., Guo T., Guo J., Yin Y., Ji Y., Li Z., Zhang J., Wang X., Qiao F., Xiao Y., Zan Y., and Yan J., 2022, Complex genetic architecture underlying the plasticity of maize agronomic traits, Plant Communications, 4(3): 100473. https://doi.org/10.1016/j.xplc.2022.100473 Li D., Li G., Wang H., Guo Y., Wang M., Lu X., Luo Z., Zhu X., Weiß T., Roller S., Chen S., Yuan L., Würschum T., and Liu W., 2022, Genetic dissection of phosphorus use efficiency and genotype-by-environment interaction in maize, International Journal of Molecular Sciences, 23(22): 13943. https://doi.org/10.3390/ijms232213943 Ljubičić N., Popović V., Kostić M., Pajić M., Buđen M., Gligorević K., Drazic M., Bižić M., and Crnojevic V., 2023, Multivariate Interaction analysis of Zea mays L. genotypes growth productivity in different environmental conditions, Plants, 12(11): 2165. https://doi.org/10.3390/plants12112165 Lu Y., Yan J., Guimarães C., Taba S., Hao Z., Gao S., Chen S., Li J., Zhang S., Vivek B., Magorokosho C., Mugo S., Makumbi D., Parentoni S., Shah T., Rong T., Crouch J., and Xu Y., 2009, Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms, Theoretical and Applied Genetics, 120: 93-115. https://doi.org/10.1007/s00122-009-1162-7 Mayer M., Hölker A., González-Segovia E., Bauer E., Presterl T., Ouzunova M., Melchinger A., and Schön C., 2020, Discovery of beneficial haplotypes for complex traits in maize landraces, Nature Communications, 11: 4954. https://doi.org/10.1038/s41467-020-18683-3 Mhoswa L., Derera J., Qwabe F., and Musimwa T., 2016, Diversity and path coefficient analysis of Southern African maize hybrids, Chilean Journal of Agricultural Research, 76: 143-151. https://doi.org/10.4067/S0718-58392016000200002 Naggar A., Shafik M., Musa R., Younis A., and Anany A., 2020, Genetic variability of maize hybrids and populations and interrelationships among grain yield and its related traits under drought and low N using multivariate analysis, Asian Journal of Biochemistry, Genetics and Molecular Biology, 4(2): 26-44. https://doi.org/10.9734/ajbgmb/2020/v4i230102 Nelimor C., Badu‐Apraku B., Nguetta S., Tetteh A., and Garcia-Oliveira A., 2020, Phenotypic characterization of maize landraces from Sahel and Coastal West Africa reveals marked diversity and potential for genetic improvement, Journal of Crop Improvement, 34: 122-138. https://doi.org/10.1080/15427528.2019.1674760
RkJQdWJsaXNoZXIy MjQ4ODYzNA==