MGG_2025v16n1

Maize Genomics and Genetics 2025, Vol.16, No.1, 34-44 http://cropscipublisher.com/index.php/mgg 43 Kleiber D., Prigge V., Melchinger A., Burkard F., Vicente S., Palomino G., and Gordillo G., 2012, Haploid fertility in temperate and tropical maize germplasm, Crop Science, 52: 623-630. https://doi.org/10.2135/CROPSCI2011.07.0395 Kurtz B., Gardner C., Millard M., Nickson T., and Smith S., 2016, Global access to maize germplasm provided by the US national plant germplasm system and by US plant breeders, Crop Science, 56: 931-941. https://doi.org/10.2135/CROPSCI2015.07.0439 Lezzi A., Stagnati L., Madormo F., Chabloz D., Lanubile A., Letey M., Marocco A., Bassignana M., and Busconi M., 2023, Characterization and valorization of maize landraces from Aosta valley, Plants, 12(14): 2674. https://doi.org/10.3390/plants12142674 Li Z., Hong T., Shen G., Gu Y., Guo Y., and Han J., 2022a, Amino acid profiles and nutritional evaluation of fresh sweet-waxy corn from three different regions of China, Nutrients, 14(19): 3887. https://doi.org/10.3390/nu14193887 Li Z., Hong T., Zhao Z., Gu Y., Guo Y., and Han J., 2022b, Fatty acid profiles and nutritional evaluation of fresh sweet-waxy corn from three regions of China, Foods, 11(17): 2636. https://doi.org/10.3390/foods11172636 Lu Y., Yan J., Guimarães C., Taba S., Hao Z., Gao S., Chen S., Li J., Zhang S., Vivek B., Magorokosho C., Mugo S., Makumbi D., Parentoni S., Shah T., Rong T., Crouch J., and Xu Y., 2009, Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms, Theoretical and Applied Genetics, 120: 93-115. https://doi.org/10.1007/s00122-009-1162-7 Mansfield B., and Mumm R., 2014, Survey of plant density tolerance in U.S. maize germplasm, Crop Science, 54: 157-173. https://doi.org/10.2135/CROPSCI2013.04.0252 Mayer M., Hölker A., González-Segovia E., Bauer E., Presterl T., Ouzunova M., Melchinger A., and Schön C., 2020, Discovery of beneficial haplotypes for complex traits in maize landraces, Nature Communications, 11: 4954. https://doi.org/10.1038/s41467-020-18683-3 Mikel M., and Dudley J., 2006, Evolution of North American dent corn from public to proprietary germplasm, Crop Science, 46: 1193-1205. https://doi.org/10.2135/CROPSCI2005.10-0371 Mubarak A., Mohammathu M., and Kumara A., 2023, Will future maize improvement programs leverage the canopy light-interception, photosynthetic, and biomass capacities of traditional accessions? PeerJ, 11: e15233. https://doi.org/10.7717/peerj.15233 Nass L., and Paterniani E., 2000, Pre-breeding: a link between genetic resources and maize breeding, Scientia Agricola, 57: 581-587. https://doi.org/10.1590/S0103-90162000000300035 Njeri S., Makumbi D., Warburton M., Diallo A., Jumbo M., and Chemining’wa G., 2017, Genetic analysis of tropical quality protein maize (Zea mays L.) germplasm, Euphytica, 213: 261. https://doi.org/10.1007/s10681-017-2048-4 Ortiz R., Taba S., Tovar V., Mezzalama M., Xu Y., Yan J., and Crouch J., 2010, Conserving and enhancing maize genetic resources as global public goods- a perspective from CIMMYT, Crop Science, 50: 13-28. https://doi.org/10.2135/CROPSCI2009.06.0297 Prasanna B., Cairns J., Zaidi P., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B., Nair S., Rashid Z., Vinayan M., Issa A., Vicente S., Dhliwayo T., and Zhang X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 Prasanna B., Nair S., Babu R., Gowda M., Zhang X., Xu Y., Olsen M., Chaikam V., Cairns J., Zaman-Allah M., Beyene Y., Tarekegne A., and Magorokosho C., 2020, Increasing genetic gains in maize in stress-prone environments of the tropics, Genomic Designing of Climate-Smart Cereal Crops, 3: 97-132. https://doi.org/10.1007/978-3-319-93381-8_3 Priyanka V., Kumar R., Dhaliwal I., and Kaushik P., 2021, Germplasm conservation: instrumental in agricultural biodiversity—a review, Sustainability, 13(12): 6743. https://doi.org/10.3390/SU13126743 Ragot M., Sisco P., Hoisington D., and Stuber C., 1995, Molecular‐marker‐mediated characterization of favorable exotic alleles at quantitative trait loci in maize, Crop Science, 35: 1306-1315. https://doi.org/10.2135/CROPSCI1995.0011183X003500050009X Ribaut J., and Ragot M., 2006, Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives, Journal of Experimental Botany, 58(2): 351-360. https://doi.org/10.1093/JXB/ERL214 Rice B., and Lipka A., 2021, Diversifying maize genomic selection models, Molecular Breeding, 41: 33. https://doi.org/10.1007/s11032-021-01221-4 Rogers A., Bian Y., Krakowsky M., Peters D., Turnbull C., Nelson P., and Holland J., 2022, Genomic prediction for the germplasm enhancement of maize project, The Plant Genome, 15(4): e20267. https://doi.org/10.1002/tpg2.20267

RkJQdWJsaXNoZXIy MjQ4ODYzNA==