MGG_2025v16n1

Maize Genomics and Genetics 2025, Vol.16, No.1, 34-44 http://cropscipublisher.com/index.php/mgg 42 Alves B., and Filho A., 2017, Linear relationships between agronomic and nutritional traits in transgenic genotypes of maize, Journal of Cereal Science, 76: 35-41. https://doi.org/10.1016/J.JCS.2017.05.010 Araújo P., and Nass L., 2002, Caracterização e avaliação de populações de milho crioulo, Scientia Agricola, 59: 589-593. https://doi.org/10.1590/S0103-90162002000300027 Azanza F., Bar-Zur A., and Juvik J., 2004, Variation in sweet corn kernel characteristics associated with stand establishment and eating quality, Euphytica, 87: 7-18. https://doi.org/10.1007/BF00022959 Blanco M., Engstrom F., Smelser A., and Shen N., 2008, Germplasm enhancement of maize, Iowa State University Digital Repository, 30: 7-16. https://doi.org/10.31274/FARMPROGRESSREPORTS-180814-1805 Budhlakoti N., Kushwaha A., Rai A., Chaturvedi K., Kumar A., Pradhan A., Kumar U., Kumar R., Juliana P., Mishra D., and Kumar S., 2022, Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops, Frontiers in Genetics, 13: 832153. https://doi.org/10.3389/fgene.2022.832153 Carena M., Pollak L., Salhuana W., and Denuc M., 2009, Development of unique and novel lines for early-maturing hybrids: moving GEM germplasm northward and westward, Euphytica, 170: 87-97. https://doi.org/10.1007/s10681-009-9985-5 Chen F., Yao Q., Liu H., and Fang P., 2016, Evaluation on the germplasm of maize (Zea mays L.) landraces from southwest China, Genetics and Molecular Research, 15(4): 9160. https://doi.org/10.4238/gmr15049160 Crossa J., Pérez-Rodríguez P., Cuevas J., Montesinos-López O., Jarquín D., De Los Campos G., Burgueño J., González-Camacho J., Pérez-Elizalde S., Beyene Y., Dreisigacker S., Singh R., Zhang X., Gowda M., Roorkiwal M., Rutkoski J., and Varshney R., 2017, Genomic selection in plant breeding: methods, models, and perspectives, Trends in Plant Science, 22(11): 961-975. https://doi.org/10.1016/j.tplants.2017.08.011 Dermail A., Fuengtee A., Lertrat K., Suwarno W., Lübberstedt T., and Suriharn K., 2021, Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand, Agronomy, 12(1): 87. https://doi.org/10.3390/agronomy12010087 Fang Q., 2005, Germplasm classification of germplasm resources of waxy corn, Tianjin Agricultural Sciences, 1: 19-21. Fan J., Zhou J., Wang B., De León N., Kaeppler S., Lima D., and Zhang Z., 2022, Estimation of maize yield and flowering time using multi-temporal UAV-based hyperspectral data, Remote Sensing, 14: 3052. https://doi.org/10.3390/rs14133052 Flint-Garcia S., Bodnar A., and Scott M., 2009, Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte, Theoretical and Applied Genetics, 119: 1129-1142. https://doi.org/10.1007/s00122-009-1115-1 Francia E., Tacconi G., Crosatti C., Barabaschi D., Bulgarelli D., Dall’Aglio E., and Valm G., 2005, Marker assisted selection in crop plants, Plant Cell, Tissue and Organ Culture, 82: 317-342. https://doi.org/10.1007/s11240-005-2387-z Guzzon F., Gianella M., Juarez J., Cano C., and Costich D., 2021, Seed longevity of maize conserved under germplasm bank conditions for up to 60 years, Annals of Botany, 127(6): 775-785. https://doi.org/10.1093/aob/mcab009 Hallauer A., and Carena M., 2013, Adaptation of tropical maize germplasm to temperate environments, Euphytica, 196: 1-11. https://doi.org/10.1007/s10681-013-1017-9 Hayano-Kanashiro C., De La Vega M., Reyes-Valdés M., Pons-Hernández J., Hernández-Godínez F., Alfaro-Laguna E., Herrera-Ayala J., Vega-Sánchez M., Carrera-Valtierra J., and Simpson J., 2017, An SSR‐based approach incorporating a novel algorithm for identification of rare maize genotypes facilitates criteria for landrace conservation in Mexico, Ecology and Evolution, 7: 1680-1690. https://doi.org/10.1002/ece3.2754 He J., Zhao X., Laroche A., Lu Z., Liu H., and Li Z., 2014, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Frontiers in Plant Science, 5: 484. https://doi.org/10.3389/fpls.2014.00484 He T., and Li C., 2020, Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change, The Crop Journal, 8(5): 688-700. https://doi.org/10.1016/j.cj.2020.04.005 Hou J., Zhang J., Bao F., Zhang P., Han H., Tan H., Chen B., and Zhao F., 2024, The contribution of exotic varieties to maize genetic improvement, Molecular Plant Breeding, 15(4): 198-208. https://doi.org/10.5376/mpb.2024.15.0020 Kebede H., Abbas H., Fisher D., and Bellaloui N., 2012, Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress, Toxins, 4: 1385-1403. https://doi.org/10.3390/toxins4111385

RkJQdWJsaXNoZXIy MjQ4ODYzNA==