Maize Genomics and Genetics 2025, Vol.16, No.1, 20-33 http://cropscipublisher.com/index.php/mgg 31 Huang S.H., Ding W.C., Jia L.L., Hou Y.P., Zhang J.J., Xu X.P., Xu R., Ullah S., Liu Y.X., and He P., 2021, Cutting environmental footprints of maize systems in China through Nutrient Expert management, Journal of Environmental Management, 282: 111956. https://doi.org/10.1016/j.jenvman.2021.111956 Huang W.Z., 2024, Nitrogen fixation in legumes: genetic mechanisms and agricultural applications, Field Crop, 7(2): 58-69. https://doi.org/10.5376/fc.2024.07.0007 Jafari F., Wang B.B., Wang H.Y., and Zou J.J., 2023, Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond, Journal of Integrative Plant Biology, 66(5): 849-864. https://doi.org/10.1111/jipb.13603 Jing J., Rui Y., Zhang F., Rengel Z., and Shen J., 2010, Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification, Field Crops Research, 119(2-3): 355-364. https://doi.org/10.1016/J.FCR.2010.08.005 Kumar R., Bhardwaj A., Singh L.P., and Singh G., 2022, Environmental impact assessment of maize production in Northern India, IOP Conference Series: Earth and Environmental Science, 1084(1): 12042 https://doi.org/10.1088/1755-1315/1084/1/012042 Li C.J., Xiong Y.W., Cui Z., Huang Q.Z., Xu X., Han W.G., and Huang G.H., 2020, Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zeamays L.) in the Hetao Irrigation District of China, Agricultural Water Management, 232: 106065. https://doi.org/10.1016/j.agwat.2020.106065 Li G.H., Cheng Q., Li L., Lu D.L., and Lu W.P., 2021, N, P and K use efficiency and maize yield responses to fertilization modes and densities, Journal of Integrative Agriculture, 20(1): 78-86. https://doi.org/10.1016/s2095-3119(20)63214-2 Li G.B., Zhao B., Dong S.T., Zhang J.W., Liu P., and Lu W.P., 2020, Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize, Agricultural Water Management, 227: 105834. https://doi.org/10.1016/j.agwat.2019.105834 Li H.B., Wang, X., Brooker R.W., Rengel Z., Zhang, F.S., Davies W.J., and Shen, J.B., 2018, Root competition resulting from spatial variation in nutrient distribution elicits decreasing maize yield at high planting density, Plant and Soil, 439: 219-232. https://doi.org/10.1007/s11104-018-3812-5 Liu M.L., Wang C., Wang F.Y., and Xie, Y.J., 2019, Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil, Applied Soil Ecology, 142: 147-154. https://doi.org/10.1016/J.APSOIL.2019.04.024 Liu X.M., Zhang L.G., Yu Y., Qian C.R., Li C,F., Wei S., Li C.F., and Gu W.R., 2022, Nitrogen and chemical control management improve yield and quality in high-density planting of maize by promoting root-bleeding sap and nutrient absorption, Frontiers in Plant Science, 13: 754232. https://doi.org/10.3389/fpls.2022.754232 Ma C.J., Yuan H.B., Shi N., Sun Z.Q., Liu S.L., Wang X.J., Li B.W., Li S., and Liu Z.H., 2023, Effects of phosphate application rate on grain yield and nutrition use of summer maize under the coastal saline-alkali land, Agronomy, 13(11): 2668. https://doi.org/10.3390/agronomy13112668 Martins K.V., Dourado-Neto D., Reichardt, K., van Lier Q.D.J., Favarin J.L., Sartori F.F., Felisberto G., and Mello S.D.C, 2017, Preliminary studies to characterize the temporal variation of micronutrient composition of the above ground organs of maize and correlated uptake rates, Frontiers in Plant Science, 8: 1482. https://doi.org/10.3389/fpls.2017.01482 Nasar J., Wang G.Y., Zhou F.J., Gitari H., Zhou X.B., Tabl K.M., Hasan M.E., Ali H., Waqas M.M., Ali I., and Jahan M.S., 2022, Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping, Frontiers in Plant Science, 13: 1014640. https://doi.org/10.3389/fpls.2022.1014640 Nuss E.T., and Tanumihardjo S.A., 2010, Maize: a paramount staple crop in the context of global nutrition, Comprehensive Reviews in Food Science and Food Safety, 9(4): 417-436. https://doi.org/10.1111/J.1541-4337.2010.00117.X Oliveira S.L., Crusciol C.A.C., Rodrigues V.A., Galeriani T.A., Portugal J.R., Bossolani J.W., Moretti L.G., Calonego J.C., and Cantarella H., 2022, Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize, Frontiers in Plant Science, 13: 887682. https://doi.org/10.3389/fpls.2022.887682 Piao L., Zhang S.Y., Yan J.Y., Xiang T.X., Chen, Y., Li, M., and Gu W.R., 2022, Contribution of fertilizer, density and row spacing practices for maize yield and efficiency enhancement in Northeast China, Plants, 11(21): 2985. https://doi.org/10.3390/plants11212985 Quan Z., Zhang X., Davidson E.A., Zhu F.F., Li S.L., Zhao X.H., Chen X., Zhang L.M., He J.Z., Wei W.X., and Fang Y.T., 2021, Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field 15N tracer studies, Earth's Future, 9(5): e2020EF001514. https://doi.org/10.1029/2020EF001514
RkJQdWJsaXNoZXIy MjQ4ODYzNA==