Maize Genomics and Genetics 2025, Vol.16, No.1, 10-19 http://cropscipublisher.com/index.php/mgg 18 Balbaa M., Osman H., Kandil E., Javed T., Lamlom S., Ali H., Kalaji H., Wróbel J., Telesiński A., Brysiewicz A., Ghareeb R., Abdelsalam N., and Abdelghany A., 2022, Determination of morpho-physiological and yield traits of maize inbred lines (Zea mays L.) under optimal and drought stress conditions, Frontiers in Plant Science, 13: 959203. https://doi.org/10.3389/fpls.2022.959203 Bankole F., Badu-Apraku B., Salami A., Falade T., Bandyopadhyay R., and Ortega‐Beltran A., 2022, Identification of early and extra-early maturing tropical maize inbred lines with multiple disease resistance for enhanced maize production and productivity in sub-Saharan Africa, Plant Disease, 106(10): 2638-2647. https://doi.org/10.1094/PDIS-12-21-2788-RE Cairns J., Crossa J., Zaidi P., Grudloyma P., Sánchez C., Araus J., Thaitad S., Makumbi D., Magorokosho C., Bänziger M., Menkir A., Hearne S., and Atlin G., 2013, Identification of drought, heat, and combined drought and heat tolerant donors in maize, Crop Science, 53: 1335-1346. https://doi.org/10.2135/CROPSCI2012.09.0545 Chen J., Velten J., Xin Z., Stout J., and Xu W., 2012, Characterization of maize inbred lines for drought and heat tolerance, Journal of Soil and Water Conservation, 67: 354-364. https://doi.org/10.2489/jswc.67.5.354 Chiuta N., and Mutengwa C., 2020, Combining ability of quality protein maize inbred lines for yield and morpho-agronomic traits under optimum as well as combined drought and heat-stressed conditions, Agronomy, 10(2): 184. https://doi.org/10.3390/agronomy10020184 Dawaki K., Magashi A., Daraja Y., Yawale M., Garko M., Fulani M., Saad A., and Abdussalam S., 2023, Genetic variability, heritability and genetic advance for yield and its related traits in maize (Zeamays L.) inbred lines as influenced by drought and heat stress conditions in Sudan Savannah of Nigeria, European Modern Studies Journal, 7(3): 467-474. https://doi.org/10.59573/emsj.7(3).2023.44 Haidash O., Dziubetsky B., Cherchel V., and Musatova L., 2023, Evaluation of source material for sweet maize by the main breeding characteristics, The Scientific Journal Grain Crops, 6(2): 41-47. https://doi.org/10.31867/2523-4544/0230 Hu Y., Colantonio V., Müller B., Leach K., Nanni A., Finegan C., Wang B., Baseggio M., Newton C., Juhl E., Hislop L., González J., Rios E., Hannah L., Swarts K., Gore M., Hennen-Bierwagen T., Myers A., Settles A., Tracy W., and Resende M., 2021, Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn, Nature Communications, 12: 1227. https://doi.org/10.1038/s41467-021-21380-4 Kamara M., Ghazy N., Mansour E., Elsharkawy M., Kheir A., and Ibrahim K., 2021, Molecular genetic diversity and line×tester analysis for resistance to late wilt disease and grain yield in maize, Agronomy, 11(5): 898. https://doi.org/10.3390/AGRONOMY11050898 Li L., and Huang W.Z., 2024, The genetic basis of nutritional quality traits in maize: insights from GWAS, Maize Genomics and Genetics, 15(1): 18-26. https://doi.org/10.5376/mgg.2024.15.0003 Lu Y., Hao Z., Xie C., Crossa J., Araus J., Gao S., Vivek B., Magorokosho C., Mugo S., Makumbi D., Taba S., Pan G., Li X., Rong T., Zhang S., and Xu Y., 2011, Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments, Field Crops Research, 124: 37-45. https://doi.org/10.1016/J.FCR.2011.06.003 Makinde S., Badu‐Apraku B., Ariyo O., and Porbeni J., 2023a, Combining ability of extra-early maturing pro-vitamin A maize (Zea mays L.) inbred lines and performance of derived hybrids under Striga hermonthica infestation and low soil nitrogen, PLOS ONE, 18(2): e0280814. https://doi.org/10.1371/journal.pone.0280814 Matongera N., Ndhlela T., Biljon A., Kamutando C., and Labuschagne M., 2023a, Combining ability and testcross performance of multi-nutrient maize under stress and non-stress environments, Frontiers in Plant Science, 14: 1070302. https://doi.org/10.3389/fpls.2023.1070302 Matongera N., Ndhlela T., Biljon A., and Labuschagne M., 2023b, Genotype x environment interaction and yield stability of normal and biofortified maize inbred lines in stress and non-stress environments, Cogent Food and Agriculture, 9(1): 2163868. https://doi.org/10.1080/23311932.2022.2163868 Mendonça L., Granato Í., Alves F., Morais P., Vidotti M., and Fritsche‐Neto R., 2017, Accuracy and simultaneous selection gains for N-stress tolerance and N-use efficiency in maize tropical lines, Scientia Agricola, 74: 481-488. https://doi.org/10.1590/1678-992X-2016-0313 Menkir A., Crossa J., Meseka S., Bossey B., Muhyideen O., Riberio P., Coulibaly M., Yacoubou A., Olaoye G., and Haruna A., 2020, Stacking tolerance to drought and resistance to a parasitic weed in tropical hybrid maize for enhancing resilience to stress combinations, Frontiers in Plant Science, 11: 166. https://doi.org/10.3389/fpls.2020.00166 Okunlola G., Badu‐Apraku B., Ariyo O., and Ayo-Vaughan M., 2023, The combining ability of extra-early maturing quality protein maize (Zea mays) inbred lines and the performance of their hybrids in Striga-infested and low-nitrogen environments, Frontiers in Sustainable Food Systems, 7: 1238874. https://doi.org/10.3389/fsufs.2023.1238874 Ouhaddou R., Meddich A., Ikan C., Lahlali R., Barka E., Hajirezaei M., Duponnois R., and Baslam M., 2023, Enhancing maize productivity and soil health under salt stress through physiological adaptation and metabolic regulation using indigenous biostimulants, Plants, 12(21): 3703. https://doi.org/10.3390/plants12213703
RkJQdWJsaXNoZXIy MjQ4ODYzNA==