MGG_2025v16n1

Maize Genomics and Genetics 2025, Vol.16, No.1, 1-9 http://cropscipublisher.com/index.php/mgg 8 Kimball B., Boote K., Hatfield J., Ahuja L., Stöckle C., Archontoulis S., Baron C., Basso B., Bertuzzi P., Constantin J., Deryng D., Dumont B., Durand J., Ewert F., Gaiser T., Gayler S., Hoffmann M., Jiang Q., Kim, S., Lizaso J., Moulin S., Nendel C., Parker P., Palosuo T., Priesack E., Qi Z., Srivastava A., Stella T., Tao F., Thorp K., Timlin D., Twine T., Webber H., Willaume M., and Williams K., 2019, Simulation of maize evapotranspiration: an inter-comparison among 29 maize models, Agricultural and Forest Meteorology, 271: 264-284. https://doi.org/10.1016/J.AGRFORMET.2019.02.037 Li C., Li Y., Li Y., and Fu G., 2018, Cultivation techniques and nutrient management strategies to improve productivity of rain-fed maize in semi-arid regions, Agricultural Water Management, 210: 149-157. https://doi.org/10.1016/J.AGWAT.2018.08.014 Li C., Wang C., Wen X., Qin X., Liu Y., Han J., Li Y., Liao Y., and Wu W., 2017, Ridge-furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat-maize double-cropping system in dry semi-humid areas, Field Crops Research, 203: 201-211. https://doi.org/10.1016/J.FCR.2016.12.029 Li Y., Yang L., Wang H., Xu R., Chang S., Hou F., and Jia Q., 2019, Nutrient and planting modes strategies improves water use efficiency, grain-filling and hormonal changes of maize in semi-arid regions of China, Agricultural Water Management, 223: 105723. https://doi.org/10.1016/J.AGWAT.2019.105723 Li Y.Z., 2024, Starch biosynthesis and engineering starch yield and properties in cassava, Molecular Plant Breeding, 15(2): 63-69. https://doi.org/10.5376/mpb.2024.15.0008 Liu N., 2024, Unveiling the mechanism of proprioception in primates: the application of task-driven neural network models, Bioscience Method, 15(1): 21-27. https://doi.org/10.5376/bm.2024.15.0003 Liu W., Xiong Y., Xu X., Xu F., Hussain S., Xiong H., and Yuan J., 2019, Deep placement of controlled-release urea effectively enhanced nitrogen use efficiency and fresh ear yield of sweet corn in fluvo-aquic soil, Scientific Reports, 9: 20307. https://doi.org/10.1038/s41598-019-56912-y Nandjui J., Adja N., Kouadio K., N’gouandi M., and Idrissou L., 2019, Impact of soil fertility management practices on insect pests and diseases of maize in Southwest Cote d’Ivoire, Journal of Applied Biosciences, 127: 12809-12819. https://doi.org/10.4314/jab.v127i1.5 Pereira N., Galindo F., Gazola R., Dupas E., Rosa P., Mortinho E., and Filho M., 2020, Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria, Frontiers in Environmental Science, 8: 40. https://doi.org/10.3389/fenvs.2020.00040 Resende C., Damaso L., Ávila M., Carvalho D., Melo P., and Rodrigues F., 2019, Agronomic efficiency of hybrids of corn to nitrogen, phosphorus and potassium targeting fresh corn, Journal of Agricultural Science, 11(9): 120-133 https://doi.org/10.5539/JAS.V11N9P120 Roberts M., Braun N., Sinclair T., Lobell D., and Schlenker W., 2017, Comparing and combining process-based crop models and statistical models with some implications for climate change, Environmental Research Letters, 12: 095010. https://doi.org/10.1088/1748-9326/aa7f33 Sairam M., Maitra S., Sahoo U., Sagar L., and Krishna T., 2023, Evaluation of precision nutrient tools and nutrient optimization in maize (Zea mays L.) for enhancement of growth, productivity and nutrient use efficiency, Research on Crops, 24: 666-677. https://doi.org/10.31830/2348-7542.2023.roc-1016 Shahini E., Shehu D., Kovalenko O., and Nikonchuk N., 2023, Comparative analysis of the main economic and biological parameters of maize hybrids that determine their productivity, Scientific Horizons, 26(4): 86-96. https://doi.org/10.48077/scihor4.2023.86 Wang J., and Hu X., 2021, Research on corn production efficiency and influencing factors of typical farms: based on data from 12 corn-producing countries from 2012 to 2019, PLoS ONE, 16(7): e0254423. https://doi.org/10.1371/journal.pone.0254423 Wang X., Miao Y., Dong R., Chen Z., Guan Y., Yue X., Fang Z., and Mulla D., 2019, Developing active canopy sensor-based precision nitrogen management strategies for maize in Northeast China, Sustainability, 11(3): 706. https://doi.org/10.3390/SU11030706 Wang Y., Guo T., Qi L., Zeng H., Liang Y., Wei S., Gao F., Wang L., Zhang R., and Jia Z., 2020, Meta-analysis of ridge-furrow cultivation effects on maize production and water use efficiency, Agricultural Water Management, 234: 106144. https://doi.org/10.1016/j.agwat.2020.106144 Wu L., Zhang G., Yan Z., Gao S., Xu H., Zhou J., Li D., Liu Y., Xie R., Ming B., Xue J., Hou P., Li S., and Wang K., 2024, Optimizing maize yield and resource efficiency using surface drip fertilization in Huang-Huai-Hai: impact of increased planting density and reduced nitrogen application rate, Agronomy, 14(5): 944. https://doi.org/10.3390/agronomy14050944 Xin Y., and Tao F., 2019, Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain, The Science of the Total Environment, 654: 480-492. https://doi.org/10.1016/j.scitotenv.2018.11.126 Zhang G., Liu C., Xiao C., Xie R., Ming B., Hou P., Liu G., Xu W., Shen D., Wang K., and Li S., 2017, Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China, Field Crops Research, 211: 137-146. https://doi.org/10.1016/J.FCR.2017.05.026

RkJQdWJsaXNoZXIy MjQ4ODYzNA==