MGG_2024v15n5

Maize Genomics and Genetics 2024, Vol.15, No.5, 257-269 http://cropscipublisher.com/index.php/mgg 269 Simmons C.R., Lafitte H.R., Reimann K.S., Brugière N., Roesler K., Albertsen M.C., Greene T.W., and Habben J.E., 2021, Successes and insights of an industry biotech program to enhance maize agronomic traits, Plant Science, 307: 110899. https://doi.org/10.1016/j.plantsci.2021.110899 Springer N.M., Anderson S.N., Andorf C.M., Ahern K.R., Bai F., Barad O., Barbazuk W.B., Bass H., Baruch K., Ben-Zvi G., Buckler E.S., Bukowski R., Campbell M.S., Cannon E.K.S., Chomet P., Dawe R.K., Davenport R., Dooner H.K., Du LH.., Du C.G., Easterling K.A., Gault C., Guan J.C., Hunter C.T., Jander G., Jiao Y.P., Koch K.E., Kol G., Köllner T.G., Kudo T., Li Q., Lu F., Mayfield-Jones D., Mei W.B., McCarty D.R., Noshay J.M., Portwood J.L., Ronen G., Settles A.M., Shem-Tov D., Shi J.H., Soifer I.J., Stein J.C., Stitzer M., Suzuki M., Vera D.L., Vollbrecht E., Vrebalov J.T., Ware D., Wei S., Wimalanathan K., Woodhouse M.R., Xiong W.W., and Brutnell T.P., 2018, The maize W22 genome provides a foundation for functional genomics and transposon biology, Nature Genetics, 50(9): 1282-1288. https://doi.org/10.1038/s41588-018-0158-0 Prasanna B.M., Cairns J.E., Zaidi P.H., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A., Worku M., Gethi J., Vivek B.S., Nair S.K., Rashid Z., Vinayan M.T., Issa A.B., Vicente F.S., Dhliwayo T., and Zhang X.C., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments, Theoretical and Applied Genetics, 134(6): 1729-1752. https://doi.org/10.1007/s00122-021-03773-7 PMID: 33594449 PMCID: PMC7885763 Shikha M., Kanika A., Rao A.R., Mallikarjuna M.G., Gupta H.S., and Nepolean T., 2017, Genomic selection for drought tolerance using genome-wide SNPs in maize, Frontiers in Plant Science, 8: 550. https://doi.org/10.3389/fpls.2017.00550 PMID: 28484471 PMCID: PMC5399777 Steinwand M.A., and Ronald P.C., 2020, Crop biotechnology and the future of food, Nature Food, 1(5): 273-283. https://doi.org/10.1038/s43016-020-0072-3 Thudi M., Palakurthi R., Schnable J.C., Chitikineni A., Dreisigacker S., Mace E., Srivastava R.K., Satyavathi C.T., Odeny D., Tiwari V.K., Lam H.M., Hong Y.B., Singh V.K., Li G.W., Xu Y.B., Chen X.P., Kaila S., Nguyen H., Sivasankar S., Jackson S.A., Close T.J., Shubo W., and Varshney R.K., 2020, Genomic resources in plant breeding for sustainable agriculture, Journal of Plant Physiology, 257: 153351. https://doi.org/10.1016/j.jplph.2020.153351 PMID: 33412425 PMCID: PMC7903322 van Heerwaarden J., Hufford M., and Ross-Ibarra J., 2012, Historical genomics of north american maize, Proceedings of the National Academy of Sciences, 109(31): 12420-12425. https://doi.org/10.1073/pnas.1209275109 Wang J.X., Sidharth S., Zeng S., Jiang Y.X., Chan Y.O., Lyu Z., McCubbin T., Mertz R., Sharp R., and Joshi T., 2022, Bioinformatics for plant and agricultural discoveries in the age of multiomics: a review and case study of maize nodal root growth under water deficit, Physiologia Plantarum, 74(2): e13672. https://doi.org/10.1111/ppl.13672 Wei F.S., Coe E., Nelson W., Bharti A.K., Engler F., Butler E., Kim H., Goicoechea J.L., Chen M.S., Lee S., Fuks G., Sanchez-Villeda H., Schroeder S., Fang Z.W., McMullen M., Davis G., Bowers J.E., Paterson A.H., Schaeffer M., Gardiner J., Cone K., Messing J., Soderlund C., and Wing R.A., 2007, Physical and genetic structure of the maize genome reflects its complex evolutionary history, PLoS Genetics, 3(7): e123. https://doi.org/10.1371/journal.pgen.0030123 PMID: 17658954 PMCID: PMC1934398 Xiao Y.J., Liu H.J., Wu L., Warburton M., and Yan J.B., 2017, Genome-wide association studies in maize: praise and stargaze, Molecular Plant, 10(3): 359-374. https://doi.org/10.1016/j.molp.2016.12.008 Yan J.B., and Tan B.C., 2019, Maize biology: from functional genomics to breeding application, Journal of Integrative Plant Biology, 61(6): 654-657. https://doi.org/10.1111/jipb.12819 Yang N., and Yan J.B., 2021, New genomic approaches for enhancing maize genetic improvement, Current Opinion in Plant Biology, 60: 101977. https://doi.org/10.1016/j.pbi.2020.11.002 Yuan Y.X., Scheben A., Batley J., and Edwards D., 2019, Using genomics to adapt crops to climate change, Sustainable Solutions for Food Security, 2019: 91-109. https://doi.org/10.1007/978-3-319-77878-5_5 Zenda T., Liu S.T., Dong A.Y., and Duan H.J., 2021, Advances in cereal crop genomics for resilience under climate change, Life, 11(6): 502. https://doi.org/10.3390/life11060502 PMID: 34072447 PMCID: PMC8228855

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==