MGG_2024v15n5

Maize Genomics and Genetics 2024, Vol.15, No.5, 257-269 http://cropscipublisher.com/index.php/mgg 268 Li P.C., Cao W., Fang H.M., Xu S.H., Yin S.Y., Zhang Y.Y., Lin D.Z., Wang J.N., Chen Y.F., Xu C.W., and Yang Z.F., 2017, Transcriptomic profiling of the maize (Zeamays L.) leaf response to abiotic stresses at the seedling stage, Frontiers in Plant Science, 8: 290. https://doi.org/10.3389/fpls.2017.00290 PMID: 28298920 PMCID: PMC5331654 Li X.R., Zhu C.S., Yeh C.T., Wu W., Takacs E.M., Petsch K.A., Tian F., Bai G.H., Buckler E.S., Muehlbauer G.J., Timmermans M.C.P., Scanlon M.J., Schnable P.S., and Yu J.M., 2012, Genic and nongenic contributions to natural variation of quantitative traits in maize, Genome Research, 22: 2436-2444. https://doi.org/10.1101/gr.140277.112 PMID: 22701078 PMCID: PMC3514673 Liu J., Fernie A.R., and Yan J.B., 2019, The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement, Plant Communications, 1(1): 100010.. https://doi.org/10.1016/j.xplc.2019.100010 PMID: 33404535 PMCID: PMC7747985 Liu J.N., Seetharam A.S., Chougule K., Ou S.J., Swentowsky K.W., Gent J.I., Llaca V., Woodhouse M.R., Manchanda N., Presting G.G., Kudrna D.A., Alabady M., Hirsch C.N., Fengler K.A., Ware D., Michael T.P., Hufford M.B., and Dawe R.K., 2020, Gapless assembly of maize chromosomes using long-read technologies, Genome Biology, 21(1): 121. https://doi.org/10.1186/s13059-020-02029-9 PMID: 32434565 PMCID: PMC7238635 Marsh J.I., Hu H.F., Gill M., Batley J., and Edwards D., 2021, Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics, Theoretical and Applied Genetics, 134(6): 1677-1690. https://doi.org/10.1007/s00122-021-03820-3 Moose S.P., Dudley J.W., and Rocheford T.R., 2004, Maize selection passes the century mark: a unique resource for 21st century genomics, Trends in Plant Science, 9(7): 358-364. https://doi.org/10.1016/J.TPLANTS.2004.05.005 Muntean L., ONA A., Berindean I., Racz I., and Muntean S., 2022, Maize breeding: from domestication to genomic tools, Agronomy, 12(10): 2365. https://doi.org/10.3390/agronomy12102365 Muraya M., Schmutzer T., Ulpinnis C., Scholz U., and Altmann T., 2015, Targeted sequencing reveals large-scale sequence polymorphism in maize candidate genes for biomass production and composition, PLoS One, 10(7): e0132120. https://doi.org/10.1371/journal.pone.0132120 Nepolean T., Kaul J., Mukri G., and Mittal S., 2018, Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize, Frontiers in Plant Science, 9: 361. https://doi.org/10.3389/fpls.2018.00361 PMID: 29696027 PMCID: PMC5905169 Nie S.J., Wang B., Ding H.P., Lin H., Zhang L., Li Q.G., Wang Y.J., Zhang B., Liang A.P., Zheng Q., Wang H., Lv H.Y., Zhu K., Jia M.H., Wang X.T., Du J.Y., Zhao R.T., Jiang Z.Z., Xia C.N., Qiao Z.H., Li X.H., Liu B.Y., Zhu H.B., An R., Li Y.C., Jiang Q., Chen B.F., Zhang H.K., Wang D.N., Tang C.X., Yuan Y., Dai J., Zhan J., He W.Q., Wang X.B., Shi J., Wang B., Gong M., He X.J., Li P., Huang L., Li H., Pan C., Huang H., Yuan G.S., Lan H., Nie Y.X., Li X.Z., Zhao X.Y., Zhang X.S., Pan G.T., Wu Q.Y., Xu F., and Zhang Z.M., 2021, Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement, The Plant Journal, 108(1): 40-54. https://doi.org/10.1111/tpj.15421 Ortiz R., Taba S., Tovar V.H.C., Mezzalama M., Xu Y., Yan J., and Crouch J.H., 2010, Conserving and enhancing maize genetic resources as global public goods- a perspective from CIMMYT, Crop Science, 50(1): 13-28. https://doi.org/10.2135/CROPSCI2009.06.0297 Pourkheirandish M., Golicz A.A., Bhalla P.L., and Singh M.B., 2020, Global role of crop genomics in the face of climate change, Frontiers in Plant Science, 11: 922. https://doi.org/10.3389/fpls.2020.00922 PMID: 32765541 PMCID: PMC7378793 Richardson A.E., and Hake S., 2022, The power of classic maize mutants: driving forward our fundamental understanding of plants, The Plant Cell, 34(7): 2505-2517. https://doi.org/10.1093/plcell/koac081 PMID: 35274692 PMCID: PMC9252469 Rizzo G., Monzon J.P., Tenorio F.A., Howard R., Cassman K., and Grassini P., 2022, Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments, Proceedings of the National Academy of Sciences of the United States of America, 119(4): 2113629119. https://doi.org/10.1073/pnas.2113629119 PMID: 35042796 PMCID: PMC8795556 Rodgers-Melnick E., Vera D.L., Bass H.W., and Buckler E.S., 2016, Open chromatin reveals the functional maize genome, Proceedings of the National Academy of Sciences, 113: E3177-E3184. https://doi.org/10.1073/pnas.1525244113 PMID: 27185945 PMCID: PMC4896728

RkJQdWJsaXNoZXIy MjQ4ODYzNQ==